Synthetic-Aperture Radar Images of California Coastal Waters under Upwelling Conditions

David L. Johnson

Committee: Pierre Flament, chairman Mark Merrifield Eric Firing

Outline

- I Introduction to the Experiment
- II AVHRR Views of the California Current
- III ERS-1 SAR Views of the California Current
- IV Principles of SAR Imaging and an Estimate of Small Wave Coherence from AIRSAR C-band
- V AIRSAR Views of the California Current
- VI Comparison of Model Results to SAR Images of a Jet
- VII Conclusions

AVHRR ch_4 09/07/89 03:22 / SAR 09/08/89 16:47-19:08

ch_4:

thermal IR

17 Approx. Temp. (°C) 9

09/08/89 21:07 AVHRR ch_1 (Optical) / SAR L-band

NASA AIRSAR DC-8

Ceiling~10000 meters

Speed~220 meters/second

AVHRR ch_4 09/07/89 03:22

17 Approx. Temp. (°C) 9

AVHRR ch_4 Gradient

0.6 \sim °C / km

Unstable Shear Flow --> Vortex Generation

ERS-1 SAR Jul/Aug 1993

09/04/89 Optical Signal

AVHRR ch_4 / SAR L-band

17

SAR IMAGING GEOMETRY

 $\lambda Bragg = \lambda radar/2sin\theta$

AIRSAR Bragg Wavelengths

Illustration of the Effect of a Random Perturbation on Phase Coherence

AIRSAR C-band Bragg Wave Incoherence at Shallow Incidence Angles

AVHRR ch_4 / SAR L-band

17

09/08/89 21:07 AVHRR ch_1 (Optical)

 $\lambda \sim 250$ m

SAR Derived Swell Spectra

SAR Derived Swell Spectra

AVHRR ch_4 / SAR L-band

125.8°W

SAR P-band Crossing

λ~220

(9x9 Boxcar Mean)

 $\lambda \sim 300$ m

Jet Associated Periodic Structure

FREQUENCY SPECTRUM

AIRSAR L-band SAR

SAR Profile Across Azimuthal Front

Wave Modulation Theory of Longuet-Higgins and Stewart

v<0 jet v>0 jet The change in phase velocity, wave number, angle, and amplitude are given by: $c/co=1/[1-(v/co)\sin\theta_0]$ $k/ko = [1-(v/co)\sin\theta o]^2$ $\sin\theta = \sin\theta 0/[1-(v/co)\sin\theta 0]^2$ X θο θο $2\pi/ko$ which hold for $2\pi/ko$ $v/co \leq [1-(\sin\theta o)^{1/2}]/\sin\theta o$ θ $2\pi/k$ and $a/ao = (E/Eo)^{1/2} = (sin 2\theta o/sin 2\theta)^{1/2}$ θ $2\pi/k$ For $v/co>[1-(sin\theta o)^{1/2}]/sin\theta o$ total reflection occurs V y

Wave Field Used in the Numerical Simulation

(Piersen-Moskowitz Spectrum) × (sech² angular distribution)

Fo ~
$$\omega^{-5} e^{-(5/4)(\omega/\omega_p)^{-4}} \times \operatorname{sech}^2(\theta - \theta o)$$

where $\omega_p = 0.13\pi g/u_{10} \sim 0.6 hz$

Model Assumptions:

Velocity bunching effects are negligible:

In this case this means net surface convergence across the front is small compared to semigeostrophic jet velocity.

First order Bragg scattering is dominant:

Scattering from waves an integer multiple of the first order Bragg wavelengths contribute substantially less to the normalized radar cross section than scattering from the smallest Bragg wavelength.

All reflection at critical shear is incoherent: This implies a negligible first order Bragg return from reflected components of the wave field.

Model results for L-band AIRSAR Profile of Southeastward Azimuthal Gaussian Jet

Angle from Normal into Jet

Model results for C-band AIRSAR Profile of Southeastward Azimuthal Gaussian Jet

Angle from Normal into Jet

Model results for P-band AIRSAR Profile of Southeastward Azimuthal Gaussian Jet

Angle from Normal into Jet

SAR Backscatter Profile Across Azimuthal Front

Conclusions

Ocean wave coherence at the spatial scale of the AIRSAR

C-band spatial resolution approaches zero just below 4 cm wavelength.

 SAR imaged internal waves in this stratified upwelling environment are strongly front associated.

• Comparison of "simplest" model results with SAR data suggest wave breaking at a semi-geostrophic front for wavelengths of 7 cm and 25 cm, and no breaking, but rather turbulence induced damping (due to the breaking of smaller waves), for wavelengths of 77 cm.

Model results for L-band AIRSAR Profile of Southeastward Azimuthal Asymmetric Jet

Angle from Normal into Jet

Model results for L-band AIRSAR Profile of Northwestward Azimuthal Gaussian Jet

Angle from Normal into Jet

