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Abstract

OBSERVATIONS OF SURFACE CURRENTS IN PANAY STRAIT,

PHILIPPINES

High Frequency Doppler Radar (HFDR), shallow pressure gauges (SPG) and Acoustic

Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits

Dynamics Experiment (PhilEx) were analyzed to describe the tidal and mesoscale currents

in Panay Strait, Philippines.

Low frequency surface currents inferred from three HFDR (July 2008 – July 2009), reveal

a clear seasonal signal concurrent with the reversal of the Asian monsoon. A mesoscale

cyclonic eddy west of Panay Island is generated during the winter Northeast (NE) mon-

soon. This causes changes in the strength, depth and width of the intraseasonal Panay

coastal (PC) jet as its eastern limb. Winds from QuikSCAT and from a nearby air-

port indicate that these flow structures correlate with the strength and direction of the

prevailing local wind.

An intensive survey in February 8-9, 2009 using 24-hour of successive cross-shore Con-

ductivity - Temperature - Depth (CTD) sections, which in conjunction with shipboard

ADCP measurement show a well-developed cyclonic eddy characterized by near-surface

velocities of 50 cm/s. This eddy coincides with the intensification of the wind in between

Mindoro and Panay Islands generating a positive wind stress curl in the lee of Panay,

which in turn induces divergent surface currents. Water column response from the mean

transects show a pronounced signal of upwelling, indicated by the doming of isotherms

and isopycnals. A pressure gradient then is set up, resulting in the spin-up of a cyclonic

eddy in geostrophic balance. Evolution of the vorticity within the vortex core confirms

wind stress curl as the dominant forcing.

The Panay Strait constitutes a topographically complex system that is the locale of intense

tidal currents. The four major tidal constituents in the total energy spectra inferred from

sea level and current profile are K1, O1, M2, and S2. In terms of spatial variability, O1

and M2 are the dominant diurnal and semi-diurnal constituents, respectively. The diurnal

tide accounts for the highest variability over the shallow shelf while semi-diurnal tides

dominate over the deeper channel of the strait. In addition, inertial frequency peaks
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and exhibits an unusually broad spectra between the clockwise and counterclockwise

components, possibly shifted by the vorticity of sub-inertial currents prevalent in the

region. Vertically, major tidal components in the velocity profile appear in two distinct

layers: at 110 m, 10.7% of the variance is associated with semi-diurnal tides, and at 470

m, 16.6% of the variance is due to diurnal tides (K1 and O1). Tidal current ellipses of

semi-diurnal constituents (M2 and S2) exhibit a dominant clockwise motion in time at

near-surface depth (110 m), indicative of downward energy propagation and implying a

surface energy source. These features observed in the ADCP deployed close to the sill may

explain the dominant semi-diurnal tide from the HFDR over the channel of the strait.

Comparison of incoherent to coherent tidal energy shows coherent energy is dominant over

the shallow Cuyo shelf for both diurnal and semi-diurnal tides while incoherent energy is

stronger over the channel, distinctly over the sill and the constricted part of the strait.

The incoherent portion of the tide is presumably attributable to the surface expression

of the internal tide which seems to be generated near the sill and then is topographically

steered west over the edge of the shallow shelf where incoherent energy is dominant.
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Chapter 1

Introduction

Along the Pacific Ocean’s western margins lie the Philippine Islands, a northern seg-

ment of an archipelago stretching from Southeast Asia to Australia. This island chain

constrains the flow between the tropical western Pacific and eastern Indian oceans into

a complex configuration of narrow straits and seas of various sizes. This area is sub-

ject to the reversal of the Asian monsoon, inter-annual variations such as the El Niño

Southern Oscillation (ENSO), and episodic occurrences (e.g monsoon surges and tropical

cyclones), making it challenging to observe and model. The Office of Naval Research

(ONR) sponsored the PhilEx with a goal of exploring the oceanography and dynamics in

the narrow straits and deep basins of the Philippines using integrated in-situ and remote

observational methods with global and regional model components [Gordon and Villanoy,

2011].

Flows through Philippine straits are modulated by a range of processes at different spatial

and temporal scales. Previous work in the region using ship-drift data [Wrytki, 1961]

identified the role of the Asian monsoon in directing the surface flow between the South

China Sea (SCS) and the Sulu Sea through the Mindoro Strait-Panay Strait complex

(Figure 1.1). During the peak of the Northeast (NE: December-March) monsoon, Pacific

Ocean surface waters enter westward through the Surigao and San Bernardino Straits

into the Sulu Sea, and exit northward through Mindoro into the SCS and southward

through Sibutu Passage into the Sulawesi Sea [Wrytki, 1961]. During the Southwest (SW:

June–September) monsoon the surface flow is southward from the SCS in Mindoro Strait,
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and circulation within the Sulu Sea is cyclonic [Wrytki, 1961]. However, observations from

ship drift records are too scanty and do not give a complete picture of the circulation.

Pullen et al. [2008] used a one-way coupled high-resolution atmosphere and ocean sim-

ulation of the Philippine region, to highlight the importance of topographically-induced

wind shear in forcing the surface ocean. Monsoon surge events prevalent during winter

induce the generation and migration of pairs of counter-rotating oceanic eddies caused

by intensified wind jets and wakes in the lee of Luzon and Mindoro. Comparison of high-

resolution model and observed near-surface currents in the Philippine Archipelago, also

confirmed the strong eddy flow pattern within Mindoro Strait and west of Panay [Han

et al., 2009].

A time series of observed velocity and properties from moored ADCP in Mindoro and

Panay Straits over a year (2008) revealed a complex response to the surface monsoonal

forcing [Sprintall et al., 2012]. ADCP measurements in the upper layer in Mindoro Strait

show a distinctly seasonal cycle with northward flow during the boreal summer SW mon-

soon and southward flow during the winter NE monsoon. In contrast, upper layer flow

in Panay Strait is intra-seasonal with no clear monsoonal relationship. It has been sug-

gested that regional wind forcing dynamics are responsible for the upper layer transport

variability. Local winds shift the location of the jets and eddies prevalent in the region,

and subsequently lead to intermittent reversals and more variable upper layer transport

observed in Panay Strait [Sprintall et al., 2012].

Previous studies in Panay Strait, however were inferred from models with known errors,

such as coarse resolution, inaccuracy of forcing fields, incorrect heat flux and freshwater

parameterizations, and lack of river outflow [Han et al., 2009]. At the same time, missing

data in the upper 40m from the moored ADCP [Sprintall et al., 2012] make the connection

of the near-surface flow to the monsoon variability problematic. The vertical profiles of

currents by single-point moored ADCP also compromise the estimation of across-passage

transport [Sprintall et al., 2012]. ADCP data therefore do not fully resolve the spatial

and temporal variability of the surface layer flow.

Intensive observations of Panay Strait were carried out to qualitatively and quantita-

tively describe the mesoscale spatial structure and temporal variability of the surface

current within the strait. Measurements of surface currents from three HFDR during the

PhilEx program were analyzed to characterize the dominant low-frequency surface flows,
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investigate its forcing mechanisms, and determine the structure of the barotropic and

baroclinic tides. Analyses were done in conjunction with the wind data from QuikSCAT

and from a nearby airport, two SPG, one ADCP mooring, hydrographic data, modeled

wind from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and

satellite images of sea surface temperature, ocean color, and wind speed.
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Figure 1.1: Bathymetric map showing the major straits and basins of the Philippine
archipelago. Bathymetry contours are in meters.
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Chapter 2

Environmental and Instrumental

Setting

2.1 Physical Setting

The Panay Strait serves as the major pathway of South China Sea water entering through

Mindoro Strait into the deep Sulu Sea basin (Figure 2.1). The strait is bounded by the

coast of Panay Island on the east and the Palawan Island chain on the west. Along

Panay, the shelf is narrow (less than 10 km) while the northern Palawan shelf extends

eastward as the shallow Cuyo Shelf. This then forms a deep channel close to the coast

of Panay, based on 100 m isobath with sill depth of about 570 m deep. On the shelf lies

the low-lying Cuyo Group of Islands and extensive reefs.

The flow within the strait is modulated by a range of processes such as tidal variations,

seasonal reversal of the monsoon, sea level variations between SCS and the Pacific Ocean,

interannual variations such as ENSO, and episodic occurrence of monsoon surges and

tropical cyclones [White et al., 2003; McClean et al., 2005; Pullen et al., 2008; Han et al.,

2009; May et al., 2011].
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2.2 Instrumental Setting

Three short-wave ocean current-mapping radars were deployed along the west coast of

Panay Island to measure surface circulation from July 2008 to August 2009 during the

PhilEx program (Figure 2.1). This observational component aims to quantitatively de-

scribe the mesoscale spatial structure and the temporal variability of the surface currents

within Panay Strait. The antenna at each site are grouped in a receive array and a

transmit array. The northernmost and southernmost sites located in Pandan and Tobias

Fornier, respectively, include a linear array of 12 receiving antenna, whereas the middle

site at Laua-an consists of a linear array of 8 receiving antenna. The four transmit an-

tenna arranged in a rectangular array formed a beam toward the ocean, and a null in the

direction of the receive antennas, to reduce the direct path energy. This also reduced the

range away from the beam axis.

For each HFDR, radial currents are measured by transmitting a radio signal at 12 Mhz

frequency. The radio waves are reflected by surface gravity waves having half the elec-

tromagnetic wavelength (λ =25 m, Bragg scattering) of the transmitted signal, and are

then recorded by the receive antenna. The backscattered radio waves generate a Doppler

shifted signal in which the frequency shift is used to calculate the currents moving toward

or away from the site. Vector currents were estimated on a 5 km Cartesian grid by least-

square fitting zonal and meridional components of the radial measurements from three

sites within a 5 m search radius. The range of HFDR data used for analysis was limited

by geometric dilution of precision (GDOP, Figure 2.2) that resulted from the normal

velocity component being poorly constrained near the baseline between the sites and the

azimuthal component poorly constrained far from the sites. Vector current estimations

with a GDOP greater than 0.5 were discarded [Chavanne et al., 2007].

Periodically missing observations at long ranges (presumably due to diurnal variation

of ionospheric propagation and absorption) were resolved by linear interpolation carried

out on the vector currents (see Appendix B, after [Chavanne et al., 2007]). The least

square analysis was carried out on the interpolated time series. Temporal coverage of

the individual sites and of vector current estimations are shown in (Figure 2.3). Vector

currents with 75% temporal coverage were used for analysis.
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Failures in HFDR occurred at sites due to electrical power loss primarily because of

burned power cables and generator failures during black-outs. In times when data were

lost from one site, two sites were used to calculate vector currents. During the deployment

period, the largest data loss was during the bistatic calibration performed from December

22, 2008 to January 9, 2009.

Data quality was evaluated by cross correlations between radial currents from pairs of sites

(Figure 2.4). If along-baseline and across-baseline current components were uncorrelated

with equal variance, the correlation pattern would follow that of the cosine of the angle

between the two sites, indicating accuracy of measurements (Appendix C, [Chavanne

et al., 2007]). To further assess the accuracy of the HFDR, beam forming calibration

onboard a motorized boat was also conducted for each of the three sites.

In conjunction with the HFDR, an ADCP mooring was deployed as part of the PhilEx

Exploratory Cruise onboard the R/V Melville in June 2007 to provide aspects of the full

three-dimensional circulation in Panay strait. An upward-looking RDI Long Ranger 75

kHz, bottom mounted ADCP was located inside the region covered by HFDR, 2.5 km

downstream from the narrowest constriction of Panay Sill at 578 m water depth. The

ADCP included pressure and temperature sensors. Sampling rates, set to resolve the tides,

were 30 minutes for the ADCP and 15 minutes for the temperature and salinity sensors.

The mooring was recovered in March 2009. The ADCP returned 100% of the velocity time

series. However, due to surface reflection contamination, the bottom-mounted ADCP

was unable to resolve the near surface velocity (upper 50 m). Pressure time series were

corrected from mooring blowover. The velocity data were then linearly interpolated in

the vertical onto a 10 m depth grid and a common time base of 1 hour.

The gridded daily wind vector and wind stress fields, estimated over global ocean from

QuikSCAT scatterometer were obtained online at IFREMER (ftp://ftp.ifremer.fr.

fr/ifremer/cersat/products/gridded/MWF/L3/QuikSCATDaily). The daily wind fields

were calculated for the full QuikSCAT V3 period: October 1999-November 2009 with spa-

tial resolution of 0.25◦ in longitude and latitude. The reference height of wind data is 10

m. This new scatterometer product is assumed to have improved wind speed performance

in rain and at high wind conditions. In addition, in-situ 10 m daily wind data from the

nearby Caticlan Airport was obtained (Figure 2.1).
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A Regional Intensive Observational Period in February 2009 (RIOP-09) was conducted

covering the Mindoro-Panay Strait complex, a particular focus of PhilEx. Directed by

near real-time surface current from HFDR central processing station, an intensive hy-

drographic survey of the cyclonic eddy observed over Panay Strait was carried out. A

24-hour (Feb 8, 06:07:21 – Feb 9, 07:10:44, 2009) successive cross-shore sections using

the MacArtney TRIAXUS towed undulating vehicle equipped with Sea-Bird tempera-

ture and conductivity sensors along with hull-mounted shipboard Ocean Surveyor 150

kHz ADCP were obtained. A total of six transects were occupied, each spans 77 km

across the strait. Daily atmospheric COAMPS forecasts, described by [May et al., 2011]

and satellite images of sea surface temperature, ocean color, and wind speed provided as

real time support to the shipboard team were also used for analyses.
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Figure 2.1: Bathymetry of study area and the limits of 75% HFDR data coverage
indicated by red thick broken line. Locations of observations are marked: HFDR by
red circles, SPG by yellow diamonds, ADCP by magenta square, TRIAXUS survey

transects by green lines, and the nearby Caticlan airport by green star.
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Figure 2.2: Geometric dilution of precision (GDOP) ellipses for various geometric
configurations: (top left) between Pandan and Laua-an, (top right) Pandan and Tobias
Fornier, (bottom left) Laua-an and Tobias Fornier, (bottom right) Pandan, Laua-an
and Tobias Fornier. The legend corresponds to the threshold value to discard vector

current data that are poorly constrained.
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Figure 2.3: Temporal coverage of the three HF radar sites and of the combined vector
currents. The thickness corresponds to the percentage of grid points with data. The
percentage of data obtained during the operation is 70.3% for Pandan, 72% for Laua-an,

70.6% for Tobias and 79.4% for the vector currents.
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Figure 2.4: Cross-correlation between radial currents from pairs of sites (left column),
and cosine of the angle between the sites (right column) for Pandan and Laua-an (top
row), Pandan and Tobias (middle row) and Lauan-an and Tobias (bottom row). The

circle where the angle between the two sites is 90◦ is overlaid for reference.
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Chapter 3

Low Frequency Surface Currents in

Panay Strait, Philippines

3.1 Introduction

The mechanisms for the generation of eddies in the wake of islands are due to Ekman

pumping induced by wind stress curl [Chavanne et al., 2002; Jiménez et al., 2008], and by

instability of lateral shear as oceanic flow passes the island [Dong et al., 2009]. The wind

interaction with the island generates positive (negative) wind stress curls on the right

(left) side of the island while looking downstream, causing upward (downward) Ekman

pumping. As oceanic flow passes an island, horizontal shear and inhomogeneity in bottom

stress induces vorticity. Thus, the lee sides of islands (headlands) tend to be areas rich in

eddy activity depending on the direction of the prevailing winds and/or oceanic currents

[Lumpkin, 1998; Barton et al., 2000; Chavanne et al., 2002; Calil et al., 2008; Pullen et al.,

2008; Dong et al., 2009]. The mixture of these two processes on lee eddy generation takes

place with almost all islands, and the relative importance of these two forcing mechanisms

has been assessed using numerical models and observations.

Wind forcing was identified as the trigger mechanism in the generation of Gran Canaria

eddies, but the main mechanism responsible for the eddy shedding was the topographic

perturbation of the oceanic flow by the island flanks [Jiménez et al., 2008]. An observa-

tional study by Piedeleu et al. [2009] supported this conclusion using data from a mooring
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leeward of Gran Canaria Island. In the Hawaiian archipelago, a sensitivity study of the

generation of mesoscale eddies using a numerical model suggested that the wind, current

and topography have a cumulative effect on the generation of eddies and the complex

oceanic circulation pattern [Kersalé et al., 2011; Jia et al., 2011]. The importance of the

wind forcing in generating these oceanic eddies has been highlighted [Calil et al., 2008;

Yoshida et al., 2010; Jia et al., 2011; Kersalé et al., 2011; Couvelard et al., 2012; Caldeira

et al., 2014]. In the Hawaiian archipelago, though the interaction of the North Equatorial

Current (NEC) with the major islands is enough to generate eddies, wind observations

in high spatial and temporal resolution play an important role in oceanic circulation.

Details of the wind shear in the lee of the islands are necessary to correctly calculate the

intensities of the vorticities [Calil et al., 2008; Jia et al., 2011; Kersalé et al., 2011]. For

the Canary archipelago, the speed of the Canary Current is sufficient to create a flow at

high enough Reynolds number to produce eddies, but their generation was suggested to

be aided through Ekman pumping by the winds in the lee region of the islands [Sangrà

et al., 2009].

Without significant background currents, wind forcing in the Gulf of Tehuantepec [Barton

et al., 1993; Trasviña et al., 1995] and leeward of Madeira Island [Caldeira et al., 2014]

generates energetic ocean eddies through Ekman pumping. This isolates ocean response

to topographically-induced wind shear. The winds channeled through mountain gaps

extend as a jet over the Pacific Ocean in the Gulf of Tehuantepec and in the lee of

Madeira that spin-up ocean eddies. Wind generated eddies have also been identified in

the Philippines in the wake of Mindoro and Luzon Islands in the absence of upstream

oceanic currents [Pullen et al., 2008]. Using high-resolution air-sea modeling, monsoon

surges during the winter season trigger oceanic eddy formation and propagation in the

lee of the Philippines region of the South China Sea (SCS) [Pullen et al., 2008]. They are

driven by the wind stress curl associated with the wind jets through the gaps of the island

chain and wakes in the lee of the islands [Wang et al., 2008; Pullen et al., 2008]. These

wind jets and associated leeside wakes are caused by the airflow over the mountainous

terrain of the Philippine Archipelago. The strong winds blowing through gaps in mountain

ranges or between islands occur in the presence of along-gap pressure gradients, that are

a consequence of the partial blocking of cross-island monsoon flow by the mountains

[Gaberšek and Durran, 2004, 2006]. Topographically constrained wind from high to low

pressure was identified to be the dominant mechanism in valleys [Whiteman and Doran,
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1993] and mountainous terrain [Weber and Kaufmann, 1998].

Additional eddy formation regions have been identified within and around the Philippine

archipelago using a high-resolution configuration of the Regional Ocean Modeling System

(ROMS) and observations during the Philippine Archipelago Experiment (PhilEx) [Han

et al., 2009]. During the winter monsoon, aside from the cyclonic eddy in the lee of

Mindoro [Wang et al., 2003; Pullen et al., 2008], cyclonic circulation was identified in

the observed and simulated currents flowing northward west of Panay Island [Han et al.,

2009]. In contrast during summer, no strong eddy flow pattern within this region has been

observed. The Mindoro Strait eddy was found to be in geostrophic balance associated

with the positive wind stress curl while the Panay Strait circulation could not be resolved

by the model. These eddies were confirmed using the near-surface velocity from the

shipboard ADCP during the PhilEx Regional Intensive Observational Period in January

2008 (RIOP-08) cruise [Gordon and Villanoy, 2011] to be a response to complex wind

stress curl [Rypina et al., 2010; May et al., 2011; Pullen et al., 2011]. The eddy field

seasonal variability however, was not resolved by these one-time hydrographic cruises

and model results with known errors and limitations. In addition, the missing data in

the upper 40 m from the moored ADCP over Panay Sill made the connection of the

near-surface flow to monsoon variability more problematic [Sprintall et al., 2012].

This paper uses integrated in-situ and remote sensing analysis collected over a year (Au-

gust 2008 - August 2009) to improve understanding of Panay Strait circulation and in-

vestigates its forcing mechanisms. The sampling campaign was part of the PhilEx.

The methods used to obtain low-frequency variability of the flow are presented in section

2. The low frequency observations are described in section 3. The forcing mechanisms

of the cyclonic eddy are discussed in sections 4 and 5. The results are summarized and

discussed in section 6.

3.2 Instruments and Data Processing

An intensive observation of Panay Strait was carried out to describe the mesoscale spatial

structure and temporal variability of the surface current within the strait. Figure 3.1

shows the temporal coverage of the data which span over a year, covering the Asian
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monsoon reversal. The Northeast (NE) monsoon is between December to March while

Southwest (SW) monsoon is between June to October [Wang et al., 2001].

Tidal components of surface currents from HFDR and current profile from moored ADCP

were separated out by performing a harmonic tidal analysis using T-Tide, an open source

MATLAB toolbox as described by Pawlowicz et al. [2002]. It was then subtracted from

the original data to obtain the residuals. The residuals were further subjected to a 6-day

running median to reduce spectral leakage and to get the time series in which tides and

near-inertial oscillations have been cautiously filtered out to isolate mesoscale processes.

The Cartesian velocities were rotated into along-shore velocities based on the orientation

of the coast of Panay Island (9◦N). The similar 6-day running median was also applied

to the daily wind data from Caticlan Airport and QuikSCAT satellite. Figure 3.2 shows

the spatially averaged rotary spectra of the hourly and 6-day medianed surface current

from HFDR where high frequency variability was removed.

3.3 Description of observations

3.3.1 Local wind variability

The monsoon is traditionally defined as a seasonally reversing wind system. The alter-

nation of dry and wet seasons is in concert with the seasonal reversal of the monsoon

circulation. The reversal is due to the differential heating of land and the oceans, the

Coriolis force and moist processes that determine the strength and location of the major

monsoon precipitation [Webster et al., 1998].

Panay Strait in the Philippines is situated within the strong influence of the Asian mon-

soon winds that blow from the northeast between December and March and from the

southwest between June and October. The wind field exhibits pronounced seasonal vari-

ations between the NE and SW monsoon periods (Figure 3.3). Northeasterly winds are

stronger and more stable than southwesterly winds, producing wind jets in between is-

lands generating a distinctive spatial pattern of alternating bands of positive curl on the

left flank and negative curl on the right of Luzon, Mindoro, Panay and Negros Islands.

Consequently, positive curl on the north flank of Panay is enhanced, dominating the

lee and presenting a favorable condition for the formation of mesoscale eddies during

16



Chapter 3. Low Frequency Surface Currents in Panay Strait, Philippines

NE monsoon. These features are not evident during the SW monsoon period, which is

characterized by weaker, highly variable winds.

Wind vectors from the nearby airport correspond well with the QuikSCAT wind from

the closest grid point. Correlation (R) of zonal (U) and meridional (V ) wind components

between the two datasets are 0.93 and 0.94 with root-mean-square differences (RMS

diff) of 1.69 ms−1 and 4.09 ms−1, respectively. An abrupt reversal of the wind regime

is evident marked by a well-defined transition period followed by the short phases of

weakening (Figure 3.4). Persistent northeasterly winds occur from October to mid-April

and southwesterly winds prevail from May to September, with pronounced sub-seasonal

breaks. These break periods are an important characteristic of the SW monsoon in

Southeast Asia, and they have been associated with westward-propagating atmospheric

equatorial waves [Tsing-Chang and Weng, 1996]. The strongest winds during the NE

monsoon are in January. October and April-May mark the transition periods between

the NE monsoon and the SW monsoon, respectively.

3.3.2 Surface ocean current patterns

Surface wind forcing is particularly evident in the circulation patterns in and around the

Philippine Archipelago. In Panay Strait, which is subject to pronounced Asian monsoon

reversal, observed surface flow patterns are highly seasonal with well-defined transition

periods. Mean flow during the NE monsoon (November 2008 - March 2009) is charac-

terized by a jet-like northward flow, referred to here as the PC jet, and a southwestward

return flow forming a cyclonic circulation (Figure 3.5, top). In contrast, the SW monsoon

period is characterized by a relatively weak northward PC jet, with significant weaken-

ing and modification over the shallow Cuyo shelf (Figure 3.5, bottom) (combined for

August-September 2008 and June-July 2009).

Time series of the PC jet and cyclonic eddy over the three cross-shore transects in Figure

3.5 are shown in Figure 3.6. The PC jet is defined as the mean surface current from

the coast to the center of the eddy where the mean flow is zero, while the cyclonic eddy

is defined as the mean surface current from the center of the eddy to the west over

which HFDR data are available. Mean flow time-series clearly exhibit the most dominant

features, the steady PC jet and the seasonal cyclonic eddy. The three transects show
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comparable strength of the dominant flows over Panay Strait and depict the size of the

eddy occupying the whole HFDR domain.

The PC jet is generally northward as indicated by positive mean surface current. It

persists from mid-May – September with noticeable weakening during early May and

October, which coincides with the relaxation of the monsoon winds during transition

periods. In contrast, the cyclonic eddy is highly seasonal. It forms during NE monsoon as

indicated by southward (negative) mean surface current in mid-November and intensifies

during the peak of NE monsoon (December - February) dominating over the HFDR

domain. As the eddy strengthens in January along with progressing NE monsoon, it

moves close to the coast resulting in a more southward mean flow and weaker PC jet. By

March, a considerable westward shift of the cyclonic eddy leads to an intensified PC jet,

which replaces the eastern limb of the eddy.

3.3.3 Evidence for a wind-induced cyclonic eddy formation mech-

anism

From the analysis of the wind (Figure 3.4) and surface current (Figure 3.6), the first

signature of the cyclonic eddy west of Panay appears in mid-November, about a month

and a half after the NE monsoon prevails over the area. It strengthens with progressing

northeasterly wind then gradually shifts westward and is replaced by the enhanced north-

ward PC jet. Figure 3.7 shows a shift in the location of the eddy as the wind veered to

a more easterly orientation during the waning NE monsoon (mid-February to mid-April)

from the observed airport wind and in the snapshots of QuikSCAT wind stress and wind

stress curl (Figure 3.8). As the eddy shifts westward and widens, it reinforces the PC jet,

which is now the dominant flow pattern over the HFDR domain.

During the NE monsoon, variations of the PC jet are mainly influenced by the eddy, evi-

dent in the current profile obtained from the moored ADCP (Figure 3.9). Contoured

along-shore current profile overlaid with along-shore surface current from the closest

HFDR data (thick black line) show a generally northward PC jet with pronounced in-

tensification during the NE monsoon when the cyclonic eddy is generated. A southward

flow in January was also captured by ADCP when the cyclonic eddy moves close to the

coast as northeasterly winds intensify.
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The seasonal evolution of the cyclonic eddy appears to be an oceanic response to the

prevailing local wind. Figure 3.10 shows the mean 10 m wind and wind stress curl from

COAMPS forecasts supplied to researchers on the PhilEx RIOP-09 cruises in real time,

averaged over a 40-day period from mid-February through end of March 2009. The

acceleration of the winds on the edges of the islands of Mindoro, Panay, and Negros

and the weakening in its lee are well resolved. The surface wind derived from Envisat

Synthetic Aperture Radar (SAR) image [see Thompson and Beal, 2000, on how to extract

wind speed estimates from SAR] verifies the presence of wind jets and wakes (Figure 3.11).

Although the image is a snapshot (0141 UTC 7 March 2009), it was taken during the NE

monsoon wind regime and agrees well with the general patterns that are apparent in the

mean model winds shown in Figure 3.10. As in the model, the strongest winds, nearly 10

ms−1, are in between Mindoro and Panay through Tablas Strait. Figure 3.10 (right) shows

the resulting wind stress curl dipoles reaching the magnitude of 10 –6Nm–3 associated

with each island. However, due to the orientation of Panay Island with respect to the

NE monsoon wind, positive wind stress curl dominates in the lee, drastically affecting the

ocean circulation.

Curl of the wind stress causes Ekman flux divergence and convergence which in turn

drives Ekman pumping. To conserve mass, a vertical velocity (w) results, which is [Gill,

1982]

wE = w(−HE) = curlz
τ

ρf
(3.1)

where wE is the Ekman pumping velocity, τ is the surface wind stress, ρ is the density of

seawater (1025 kgm−3), and f is the Coriolis parameter. A vertical velocity (w) at the

base of the Ekman depth (−HE) estimates the upwelling or downwelling proportional to

the wind stress curl.

Figure 3.12 shows that the largest curl-driven Ekman pumping velocity over the Cuyo

shelf is in the lee of Panay Island, indicating an upwelling zone. Although the calculation

using satellite wind is weaker than the modeled wind, both exhibit the same general

pattern. The value of Ekman pumping velocity reaches up to 15 m.day−1 based on the

snapshots of wind stress curl calculated from COAMPS wind. The instantaneous Ekman

pumping velocities indicate a wind-induced divergent Ekman transport which agrees with
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the mean divergence calculated from HFDR in the lee of the island during the same time

period (Figure 3.13). As a result of surface divergence, the thermocline is lifted and

the water column beneath is stretched, forming the Panay Dome. Figure 3.14 shows

the mean profile of (top) temperature and (middle) density from the hydrographic cross-

shore sections. The doming of isotherms and isopycnals corresponds well with the return

flow in the near-surface along-shore current from the shipboard ADCP, indicating the

center of the eddy. The excursion of the isolines reaches around 50 m. In the current

profile (Figure 3.14, bottom), the along-shore return flow reaches a depth of about 130

m, indicating the depth of the eddy. Velocities at the surface reached mean values of 50

cms−1. The flow structure is nearly depth-independent over the shallow shelf, whereas a

strong southward flow below 150 m is evident at the deep channel in the strait. Sprintall

et al. [2012] observed similar southward flows as extraordinarily strong pulses that begin

at intermediate depth in the Fall transition and shoal toward the sub-thermocline during

the NE monsoon found both in Mindoro and Panay Straits ADCP moorings. These

southward flows are strongly correlated with the changes in the South China Sea large-

scale circulation and remote wind forcing off Vietnam [Sprintall et al., 2012] .

The uplift in the thermocline sets up a horizontal pressure gradient, which consequently

spins up the geostrophic cyclonic eddy. The eddy formation is evident in the mean

vorticity overlaid by the surface current from HFDR, in which the center coincides with

the location of largest Ekman pumping and the doming (Figure 3.15).

If the divergence is entirely wind-driven and confined within the Ekman depth, divergence

should be proportional to the Ekman pumping velocity at the base of the Ekman layer.

That is

δ = ∇h.ūh =
wE
HE

(3.2)

where δ = ∇h.ūh is the divergence, subscripts h, denote horizontal components, and wE,

is the Ekman pumping velocity at constant Ekman depth, HE=32 m determined as the

best fit between the integrals of Ekman pumping velocity and divergence calculated by

Equation ?? and Equation ??, respectively.

Figure 3.16 shows the correlation between (top) divergence and Ekman pumping velocity

and between (bottom) vorticity and Ekman pumping velocity averaged over a specified
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region (box in Figure 3.13 and Figure 3.15). All of the terms have been normalized by

f in order to facilitate comparison. The divergence and vorticity are significantly linked

together to Ekman pumping velocity, with correlation coefficient of R=0.50 and R=0.67

and RMS differences of 0.03 and 0.18, respectively.

3.3.4 Dynamical analysis of the cyclonic eddy

Vorticity input to the ocean from the overlying wind stress curl appears responsible for

the cyclonic eddy generation and evolution during the NE monsoon. By estimating the

surface vorticity balance of the low frequency surface current, wind contribution to the

generation and evolution of the vortex was assessed by

Dζ

Dt
= −(f + ζ)δ − νβ +R (3.3)

where Dζ
Dt

= ∂ζ
∂t

+u·∇ζ is the rate of change of vorticity following the fluid motion, (f+ζ)δ

is the vortex stretching, νβ is the Beta-effect term, where ν is the meridional velocity and

β is the meridional spatial derivative of f , and R is the residual term, assumed to be due

to friction and unresolved noises. Vorticity changes associated with sloping topography

was neglected.

Assuming that the momentum flux from the surface is due to wind stress, its contribution

to R is:

Rw =
1

ρHE

curlzτ (3.4)

where ρ = 1025kgm−3 is the density of seawater, HE is the Ekman depth, and curlzτ is

the wind stress curl computed from QuikSCAT gridded daily wind.

Figure 3.17 (top) shows the temporal variation of each term in the vorticity balance

equation averaged over the same box in Figure 3.13 and Figure 3.15. Note that the β

term is magnified by a factor of 10 to show the trend. The evolution of the vorticity

within the vortex core was generally dominated by frictional processes, R, which drives

the formation of cyclonic vorticity from mid-November until mid-April. Observe, however
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a significant R lag of about 10 days during NE monsoon, specifically during strengthening

of the cyclonic eddy during Dec.08, Feb.09 and Apr.09. Rw from QuikSCAT compares

well with the R from the HFDR observations, suggesting that the frictional forcing R is

induced dominantly by the wind stress curl driving the cyclonic vorticity growth after a

time lag of about 10 days (Figure 3.17, bottom).

Another interesting finding involves the β term. Recall the westward considerable shift

in the center of the eddy (Figure 3.7) during the waning NE monsoon. Figure 3.17 shows

that the shift coincides with an increasing β, though an order of magnitude less than

the other terms. We speculate that the β term causes the cyclonic eddy to propagate

westward in the manner of a Rossby wave.

Figure 3.18 and Figure 3.19 show the spatial distribution on 6 different days of each

term of the vorticity balance taken within the RIOP-09 period. If the Lagrangian rate

of change of vorticity is caused by frictional forcing, their spatial distribution should be

comparable. But since there is a considerable time lag between the two terms (Figure

3.17), disparity on their spatial variability notably exist.

3.3.4.1 Time lag between the wind forcing and the ocean response

To clarify the relationship between the cyclonic eddy formation processes and the wind

stress curl forcing (correlation shown in Figure 3.16), temporal variability of divergence,

δ, and relative vorticity, ζ, were plotted against the Ekman pumping velocity, wE

HE
, pro-

portional to wind stress curl (Figure 3.20). Since a higher correlation exists between

divergence and the Ekman pumping velocity (Figure 3.16, top), Figure 3.20 (top) specifi-

cally shows that it occurs during strong and persistent NE monsoon winds although peaks

and dips occur due to the shifts of the eddy. In contrast, vorticity increases quickly with

progressing NE monsoon winds resulting in a relatively higher RMS=0.18 compared to

divergence with RMS=0.03. The Ekman pumping velocity is positive during October

when the NE monsoon prevail however, the response of the ocean to changes in the wind

stress curl is not instantaneous. The cyclonic vortex first appears as a closed circulation

in the low frequency current field only in mid-November indicated by positive vorticity

(0.05f) and attained its maximum in February 2009 (0.61f).
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To further examine the time lag response of cyclonic eddy generation, the temporal

variation of thermocline depth anomaly is compared with the time integrals of the Ekman

pumping velocity and divergence. The best fit between the two terms was found at Ekman

depth, HE=32m and used as constant for all calculations.

The time integrals of the Ekman pumping velocity and divergence from a reference time

(July 28, 2008) represent their cumulative effect on the vorticity evolution, provided that

internal and external drags are neglected. Thermocline depth anomaly on the other hand

is proportional to vorticity, assuming a geostrophic balance in a 1.5 layer reduced gravity

model,

fu = −g′∂h
∂y

−fv = −g′∂h
∂x

(3.5)

where x and y are the conventional Cartesian coordinates, u and v the horizontal com-

ponents of velocity, f the Coriolis parameter, g′ = g∇ρ
ρb

the reduced gravity (g is gravity

= 9.8 ms−2, ρb is the density at the motionless bottom layer, and ∇ρ is the density dif-

ference between the active top and motionless bottom layer, and h(x, y) the thermocline

depth anomaly.

Equations 3.7 were differentiated to obtain the relative vorticity and after some arranging,

yields:

f(
∂v

∂x
− ∂u

∂y
) = −g′∇2h (3.6)

ζ =
−g′∇2h

f
(3.7)

The cyclonic eddy is assumed to be radially symmetric with sea surface height (h) per-

turbation at radial distance, r from the center of the eddy that has a Gaussian structure

of the form:
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h(r) = h0 exp(− r
2

L2
) (3.8)

where h0 is the amplitude of the eddy, and L is the radius of the eddy. This height

function was substituted into Equation 3.5 to give:

h =
ζfL2

g′
(3.9)

L and g′ were estimated from the mean hydrographic cross-shore section while corre-

sponding vorticity, ζ was calculated from HFDR.

Figure 3.21 shows that the Ekman divergence is an instantaneous response to the positive

wind stress curl forcing. When NE monsoon prevails, after a quick transition period in

October (Figure 3.4), the integrated wind stress curl becomes positive. Consequently,

divergence occurs and increases rapidly along with the wind stress curl from mid-October

14, 2008 until mid-April 2009. After the transition period in April 2009, the wind stress

curl becomes very weak with no further increase in the time integral. In contrast, con-

vergence occurs during the SW monsoon period as the region is now dominated by the

northward PC jet resulting in relatively higher sea level and warmer temperature evi-

dent from the bottom pressure gauges measurements deployed during the same monsoon

regime in Pandan (Figure 3.22).

Correspondingly, a time lag response in the vorticity field occurs a month after mid-

November 2009 Figure 3.21) when it increases quickly, producing a mature and closed

cyclonic eddy circulation shown in Figure 3.6 (bottom). The current vorticity reaches its

maximum in January 2009, though HFDR data is missing but can be inferred from the

increasing values of vorticity and the strength of wind reaching its maximum during this

time of the year (Figure 3.4). After that initial period, ocean vorticity responds effectively

to fluctuating local wind magnitude and direction where peaks and dips correspond with

the strong and weak NE monsoon wind, respectively. A considerable decrease of vorticity

value in March 2009 indicate the westward shift of the center of the eddy in March 2009,

though the cumulative wind stress curl and divergence are still proportionally increasing.

This further support β term causing the cyclonic eddy to propagate westward.
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3.4 Summary and Conclusion

High-resolution observations both in time and space of surface currents resolved the details

of the low-frequency mesoscale flow in Panay Strait. The surface circulation in the strait

has a distinctly seasonal cycle with the generation of a cyclonic eddy during the NE

monsoon, reinforcing the steady PC jet as its eastern limb.

The cyclonic eddy formation is the dynamic response to fluctuations in the monsoon

winds, specifically the variations of the wind jets blowing in between the islands of Min-

doro and Panay, generating the positive wind stress curl in the lee of Panay during the

NE monsoon. Based on observations and satellite-derived winds, wind curl field varia-

tions due to the changes in the strength and direction of the prevailing local wind play

an important role in the generation and evolution of the eddy, and variability of the PC

jet.

The region of positive wind stress curl causes Ekman flux divergence in the upper layer

which in turn drives Ekman pumping lifting the thermocline and stretching the water

column beneath, forming the Panay Dome. This results in horizontal pressure gradients,

which consequently generates a cyclonic eddy in geostrophic balance. The Panay Dome

is a subsurface upwelling, but to the west over the shallow Cuyo shelf, notable spreading

of isotherms and isopycnals indicate a vertically mixed water column, which destroys

the water column stratification. This therefore brings cooler, denser and nutrient-rich

waters into the euphotic zone leading to enhanced biological productivity over the region.

Satellite images confirmed cooler SST and enhanced chlorophyll concentration over the

Cuyo shelf, indicative of an active upwelling zone.

Evaluating all the terms of the surface vorticity balance equation suggests that the wind

stress curl via Ekman pumping mechanism provides the necessary input in the forma-

tion and evolution of the cyclonic eddy. The Beta-effect on the other hand may led to

propagation of the eddy westward.

In particular, the cumulative (time-integrated) effect of the wind stress curl plays a key

role on the generation of the cyclonic eddy, showing its robust mechanism to eddy kinetic

energy. Further, this study shows that unlike divergence, vorticity response to prevailing
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wind stress curl is not instantaneous causing a time-lag, which may help towards under-

standing the physical development of coastal upwelling due to Ekman pumping in the lee

of the island.
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Figure 3.1: Temporal coverage of the HFDR combined vector currents, ADCP current
profile, QuikSCAT, and Caticlan Airport winds. The thickness corresponds to the
percentage of grid points with data. The percentage of data 79.4% for the vector
currents, 100% for current profile, 98.7% for QuikSCAT and 99.8% for the airport

wind. The thick solid line marked the RIOP-09 cruise in February 2009.
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Figure 3.2: Rotary power spectra of hourly (dark gray) and 6-day medianed (light
gray) HFDR data averaged over an area with more than 75% temporal coverage. Major
tidal constituents (O1, K1, M2 and S1) and inertial frequency (f) are indicated on the

top x-axis.
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Figure 3.3: Wind stress and curl from QuikSCAT at 25-km resolution, averaged over
HFDR period during (top) NE monsoon (November-March) and (bottom) SW monsoon
(May-September). Marked with star is the Caticlan airport where observed wind data
was obtained and correlated with the nearest QuikSCAT wind data shown in Figure

3.4.
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Figure 3.4: Time-series wind vectors from nearby Caticlan airport and QuikSCAT
from the closest grid point. Correlations (R, the numbers in parentheses indicate the 5
% statistical significant level) and root-mean-square differences (RMS diff) are indicated

in the top plot for zonal (U) and meridional (V) components.
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Figure 3.5: Mean flow overlaid with speed contoured in cms−1 during (top) NE
monsoon and (bottom) SW monsoon. Three transects are marked accordingly along

which mean surface flow profiles are shown in Figure 3.6.
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Figure 3.6: Time series profiles of (top) PC jet and (bottom) cyclonic eddy. Positive
(negative) values indicate flow towards the north (south). The line color and type

corresponds to three transects in Figure 3.5.
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Figure 3.7: Mean surface flow overlaying vorticity, ζ, normalized by f contours during
peak (top, January 15–February 23, 2009) and waning (bottom, February 25-April 1,
2009) NE monsoon. The arrows indicate the mean prevailing wind vectors from the

Caticlan airport.
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Figure 3.8: Wind stress vectors overlaying the wind stress curl contours during peak
(top, January 15–February 23, 2009) and waning (bottom, February 25-April 1, 2009)

NE monsoon from QuikSCAT.

34



Chapter 3. Low Frequency Surface Currents in Panay Strait, Philippines

Aug08 Sep08 Oct08 Nov08 Dec08 Jan09 Feb09 Mar09
−60

−40

−20

0

20

40

60

TIME (MMMYY)

a
lo

n
g

−
s

h
o

re
 c

u
rr

e
n

t 
[c

m
/s

]

 

 

R = 0.76

depth (m)
−120 −110 −100 −90 −80 −70 −60 −50

Figure 3.9: Time series along-shore current from moored ADCP (contoured) over-
laid with along-shore surface current from the closest HFDR data (thick black line).
Correlation (R) between HFDR and 50 m depth bin ADCP along-shore currents is

indicated.
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Figure 3.10: The Coupled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS) left) 10 m mean wind, wind vectors plotted over wind speed contour (ms−1

and right) mean wind stress curl contour (Nm−3) from the 9 km computational grids
for the Regional Intensive Observational Period, February to March 2009 (RIOP-09).
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Figure 3.11: Surface wind speeds derived from an Envisat Synthetic Aperture Radar
(SAR) image with wind vectors from the Navy Operational Global Analysis and Pre-

diction System (NOGAPS) model for 0141 UTC 7 Mar 2009.

37



Chapter 3. Low Frequency Surface Currents in Panay Strait, Philippines

Figure 3.12: Snapshots of surface current overlaid with contoured Ekman pumping
velocity calculated from (left) QuikSCAT and (right) COAMPS wind. Wind vectors at

Caticlan airport (thick arrows) are also indicated.
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Figure 3.13: Mean surface current overlaid with contoured mean divergence for Febru-
ary to March 2009 (RIOP-09).
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Figure 3.14: Vertical transect of mean (top) temperature, (middle) density, and (bot-
tom) along-shore flow from the shipboard ADCP across the Panay Strait during the
hydrographic survey (February 8-9, 2009) shown in Figure 2.1. The mean near-surface

along-shore flow vectors are indicated above.
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Figure 3.15: HFDR mean surface current overlaid with contoured mean vorticity for
February to March 2009 (RIOP-09).
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Figure 3.16: Scatterplots of mean (top) divergence vs. Ekman pumping velocity, and
(bottom) vorticity vs. Ekman pumping velocity. Divergence and vorticity were calcu-
lated using HFDR data while Ekman pumping velocity was calculated using COAMPS
from the region inside the box shown in Figure 3.13 and Figure 3.15 during February

to March 2009 (RIOP-09).
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Figure 3.17: Time series of vorticity balance terms (Equation 3.3) averaged over the
vortex core. The β term is vertically exaggerated. Vertical dotted lines indicate the

snapshots in Figure 3.18 and Figure 3.19.
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Figure 3.18: Snapshots of the terms of the surface vorticity balance (Equation 3.3),
overlaid with surface currents. From left to right, Lagrangian rate of change of vorticity,
vortex stretching, residual, and Beta-effect terms. The times of snapshots are indicated

on the y-axis of the first column.
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Figure 3.19: Snapshots of the terms of the surface vorticity balance (Equation 3.3),
overlaid with surface currents. From left to right, Lagrangian rate of change of vorticity,
vortex stretching, residual, and Beta-effect terms. The times of snapshots are indicated

on the y-axis of the first column.
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Figure 3.20: Time-series of divergence (top) and relative vorticity (bottom) overlaid
with scaled Ekman pumping velocity. All terms were normalized by f .
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Figure 3.21: Vorticity overlaid with time integral of wind stress curl and divergence
confined within the Ekman layer (HE = 32 m).
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Figure 3.22: Time series (top) sea level and (bottom) temperature anomaly from
Pandan and Tobias Fornier shallow pressure gauges.
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Chapter 4

Coastal sea response to atmospheric

forcing in Panay Strait, Philippines

4.1 Abstract

High-resolution 10 m wind forecasts from the Coupled Ocean/Atmosphere Mesoscale Pre-

diction System (COAMPS) show the local atmospheric patterns in Panay Island, that

were not fully resolved by the gridded QuikSCAT wind data during the Regional Inten-

sive Observational Period cruises in February-March 2009 (RIOP-09) for the Philippine

Straits Dynamics Experiment (PhilEx). The Northeast (NE) monsoon is characterized by

distinct wind jets between islands and mountain gaps that generates an alternating band

of positive and negative wind stress curl to the right and left downwind of each island.

These bands are also observed in the Envisat Synthetic Aperture Radar (SAR) images.

The Panay coastal sea response includes formation of a cyclonic Panay Lee (PL) eddy, the

relatively smaller cyclonic Panay Tip (PT) eddy on the northwest flank of the island, and

the localized coastal upwelling in Pandan revealed by the sea level measurements from

the moored shallow pressure gauge and temperature from SBE37 CTD. Multiple sample

iterations with TRIAXUS and ADCP repeatedly map subregions covering the PL and

PT eddy which resolve tidal variability and low-frequency variability that represents the

seasonal response to monsoon winds. The observed features were confirmed by satellite

observations of sea surface temperature and chlorophyll concentration provided in near

real-time during the PhilEX cruise.
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4.2 Introduction

The Philippine Archipelago region is a complex array of islands and semi-enclosed seas

with interconnecting straits and sills. Atmospheric circulation is governed by the reversal

of the East Asian monsoon and the relatively steady Pacific trade winds. Circulation

within and around the Philippines is mainly influenced by a range of processes such

as tidal variations, seasonal reversal of the monsoon, sea level variations between West

Philippine Sea to the west and the western Pacific Ocean to the east, inter-annual vari-

ations such as El Niño Southern Oscillation, and episodic occurrence of monsoon surges

and tropical cyclones.

Within the island archipelago, however, finer scale variability both in the atmosphere

and the ocean are primarily controlled by island topography and morphology, which

adds complexity to the interisland circulation. In a one-way coupled atmosphere and

ocean simulation of the Philippine region, monsoon winds interacting with the volcanic

topography, lead to strong wind jets between islands and through gaps in the rugged

terrain [Pullen et al., 2008]. The model simulations show that steady monsoon winds

form stationary lee eddies, while monsoon surges frequently occurring during the winter

season trigger oceanic eddy formation and propagation depending on the orientation of

the winds in the lee of the islands. Another simulation shows the regional and local nature

of atmospheric patterns and the ocean response during RIOP-09 cruise [May et al., 2011].

It confirms that prominent, topographically generated wind jets in the gaps between the

islands, and the wakes downwind of the islands are persistent features during the NE

monsoon. Local details of the ocean response were revealed using fine-scale atmospheric

and ocean model grids while the presence of upwelled nutrient-rich water was supported

by elevated chlorophyll concentration in satellite imagery and in-situ measurements [May

et al., 2011].

The linkage between atmospheric dynamics and oceanic eddy characteristics was inferred

from high-resolution air-sea modelling [Pullen et al., 2008]. Though in reasonable agree-

ment with contemporaneous satellite and in-situ historical data, high spatial and temporal

resolution, in both observations and modeling are still needed to confirm.

In this study, coastal sea response to local atmospheric forcing is investigated using current

profiles from shipboard ADCP and CTD/fluorometer sections in conjunction with satellite
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observations of sea surface temperature and chlorophyll concentration. Along with in-situ

measurements during the RIOP-09, time series data of sea level from shallow pressure

gauge (SPG), temperature from SBE37 CTD collocated with SPG, and inferred surface

current from High Frequency Doppler Radar (HFDR) are used to investigate how the

influence of island topography on the local wind regime translates to sea level, surface

flows and hydrographic variability.

4.3 Methods

The Office of Naval Research (ONR)-sponsored Philippine Straits Dynamics Experiment

(PhilEx) Intensive Observational Period cruise was conducted focusing on the dynamically

narrow straits of the Philippines. This multi-disciplinary research cruise was held in

February 2009 (RIOP-09) under the NE monsoon regime on-board the R/V Melville

(Figure 4.1). Directed by real-time data support such as sea surface temperature, wind

speed and ocean color images, successive and multiple transects employing towed profiling

vehicle and hull-mounted shipboard 150 kHz ADCP provided the nearly synoptic views of

water column hydrography and velocity along the ship track. The hydrographic sections

were made by towing a TRIAXUS, an undulating vehicle equipped with physical and

optical sensors making quasi-synoptic, high-resolution, three-dimensional surveys of the

upper ocean [see Jones et al., 2011, on the TRIAXUS sampling approach]. TRIAXUS

maintained a vertical speed of 1 ms−1 while typically being towed at 7 knots, with along-

track horizontal resolution of 1 km or less, dependent on profile depth. TRIAXUS carried

two pairs of Sea-Bird temperature and conductivity sensors along with upward (1200

kHz) and downward (300 kHz)-looking RDI acoustic Doppler current profilers. Here

we used all the synoptic measurements obtained during the seven-day period between

February 8 and 15, 2009 by TRIAXUS focusing north of Panay Strait which include the

Thalweg section between Mindoro and Panay Island, the transect on the northwest (NW)

tip of Panay Island, and repeated sections over Pandan Bay to investigate the coastal sea

response to local wind forcing. Concurrent and subsequent along-track velocity profiles

and repeated sections over Pandan Bay (Figure 4.2) over a 24-hour span were used to

resolve the tidal variability within each survey pattern. Cruise data used for analysis

were depth profiles of velocity from the shipboard ADCP and conductivity, temperature

and chlorophyll concentration from CTD/fluorometer.
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In addition, the Naval Research Laboratory (NRL) supplied the real-time atmospheric

and oceanic forecasts for the cruises. This NRL coupled atmosphere-ocean model pro-

vides simultaneous high-resolution studies of both the meteorology and oceanography of

the region. The numerical simulations for the Philippines used the Coupled Ocean/At-

mosphere Mesoscale Prediction System (COAMPS), which consists of an atmospheric

model coupled with the Navy Coastal Ocean Model (NCOM) [see May et al., 2011, for

a more detailed description of the model]. Daily near-surface winds from COAMPS in 9

km resolution and from QuikSCAT in 25km resolution were analyzed to determine the

effects of the surface winds on the ocean features observed.

The vertical component of the wind stress curl was estimated from the COAMPS 10 m

wind stress fields.

(∇× τ).k̂ = curlz(τ) =
∂τy
∂x
− ∂τx

∂y
(4.1)

τ is the 10 m wind stress, x and y are the east and north coordinates, respectively.

Time-series observations of sea surface current in Panay Strait (July 2008 – August 2009)

provided by HFDR in conjunction with sea level measurements from shallow pressure

gauges (October 2007 – April 2009) were used to examine modifications in the surface

flows and sea level in response to local wind forcing. The vector currents generated from

the radial component of the current from three HFDR sites located at Pandan, Laua-an,

and Tobias Fornier at the western coast of Panay Island undergo quality control prior

to the analysis (see Chapter 2 for more detailed description of the data processing). At

each, grid point, 75 % temporal coverage of over a year data were used.

The sea level data were obtained from shallow pressure gauges deployed approximately 5-

10 m depth just in front of the north HFDR site. Pressure is measured every ten minutes

by a Paroscientific quartz pressure sensor with an accuracy of 0.3 mb. Correction for the

static inverse barometer (IB) effect of fluctuations in atmospheric pressure on sea level

was disregarded since it was found to be far smaller (order of 10 −2 to 10 −1cm) than the

magnitudes of the sea level variability observed. In addition, surface temperature and

salinity were obtained from SBE37 CTDs collocated with the shallow pressure gauge.
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The tidal components in the time-series data were estimated by performing a harmonic

tidal analysis using T-Tide, an open source MATLAB toolbox as described by Pawlowicz

et al. [2002]. The tidal prediction time-series were obtained and compared with the

shipboard ADCP resolving the tidal variability within each survey pattern.

4.4 Results and Discussions

4.4.1 Cruise Observational data

4.4.1.1 Velocity field

The complexities of the flow of the Panay coastal waters were captured by HFDR and ship-

board ADCP that obtain high horizontal resolution of sub-mesoscale features. Though

the measurements were made in different temporal resolutions, both the mean and syn-

optic measurements show predominant surface flows composed of a cyclonic Panay lee

(PL) eddy, and a northward Panay coastal (PC) jet which flows along the coast, branches

out to the left forming the northern limb of the PL eddy and to the right flowing further

north, veers westward and retroflects to form the small cyclonic Panay tip (PT) eddy off

the promontory (Figure 4.3).

Two successive surveys in February 8-10, 2009 and February 11-15, 2009 focused on two

eddy formations at the lee and off the tip of Panay headland, generating synoptic maps

of the apparent flows (Figure 4.4A and B). Multiple sample iterations of each region were

performed over a 24-hour span, thus resolving tidal variability within each survey pattern.

The first survey focused on the PL eddy (Figure 4.4A). The near-surface velocities (with

maximum speed of 95 cms−1 over the shallow shelf show a strong shear centered near

11.25 ◦ N, 121.7 ◦ E indicating the core of the PL eddy. Its eastern limb, the strong

northward PC jet flows along the coast with subsequent flow separation as it encounters

the Batbatan Island. The left branch flows westward and shears forming the northern

limb of the PL eddy. The relatively weaker right branch flows north close to the coast. An

offshore flow is evident as it passes across the mountain gap, then intensifies northward

and veers westward as it encounters an abrupt change in the angle of the coastline. It
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then slightly shears past the tip of the Panay headland, indicating the formation of the

PT eddy.

Figure 4.4B shows a detailed survey of the PT eddy. The measurements start a little

further north, which barely captures the shear at 11.3 ◦ N indicating the core of the PL

eddy. However, the survey reveals an energetic cyclonic eddy with maximum speed of

about 100 cms−1. Two sections that traverse from the lee of Panay to the tip of the

headland clearly show the PL eddy extending further north near 11.64◦N , defined by the

strong northwestward PC jet. The strong shears are now clearly visible with subsequent

return flow in the surveys close to the NE corner of Panay over Pandan Bay, distinctly

indicating a smaller coastal eddy structure.

The two surveys span the seven-day period with one-day sampling (February 10-11,

2009)in Tablas Strait in between, which was designed to obtain measurements across the

strait, separating the islands of Mindoro and Panay. The combination of both monsoon-

driven and tidally-driven currents predominate in the study area. The first survey was

conducted during spring tide and relatively stronger winds, in contrast to the second

survey during neap tide and weaker winds. Several locations were occupied during the

survey, obtaining one-time measurements of the velocity structure during different wind

conditions. The multiple cross-shore surveys covering the eddies over a 24-hour span

on the other hand, give an opportunity to resolve current structure during varied tidal

conditions.

Panay Lee (PL) Eddy Panay Strait sea level has semidiurnal tidal cycles based on

measurements from the shallow pressure gauge moored at Pandan, Antique (Figure 4.5).

During the 24-hour successive cross-shore survey of Panay Strait, mixed tidal variability

at K1 (23.9 hours), O1 (25.8 hours) and M2 (12.4 hours) periods predominated (Figure

4.6A). The survey was conducted during the NE monsoon regime and spring tide. The

sequence of synoptic current vectors from different depths obtained through the tidal

cycle has significantly different flow structures (Figure 4.6B and C). During flood tide

(left panels), the near-surface current from the 12 m depth bin was intensified over the

shelf with maximum speed of 94.5 cms−1, while during the ebb tide (right panels), the

intensified flow (60 cms−1) was at about 200 m depth over the channel. This is consistent

with the high percentage of variance explained by the four major tidal constituents (O1,
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K1, M2 and S2) over the shallow shelf from the HFDR inferred surface currents and in

the distinct layer centered at about 250 m from the moored ADCP (see Chapter 5).

Figure 4.7A to D shows the full velocity profiles during the flood tide (left panels) and

ebb tide (right panels), providing a comparison of the water-column current structures

during different tidal conditions under the NE monsoon regime. Generally, an enhanced

current flow with strong shear in the upper (0-130 m) layer is clearly visible indicating the

northward PC jet (in red) and the southward flow (in blue) comprising the wind-driven

cyclonic PL eddy. Over the deep channel below the PC jet is a southward flow (in blue)

with core at depth of about 200 m. A considerable modification of these dominant flows

are noticeable over the tidal cycle, with a strengthening of current near the surface during

flood tide (Figure 4.7 A and C), and at subsurface (130 m) during the ebb tide (Figure

4.7 B and D).

This sampling period coincides with relatively stronger wind as shown in Figure 4.4 from

observations at Caticlan airport. The combined influence of wind and relatively strong

tides generate an intensified flow reaching the shallow bottom of the Cuyo Shelf (Figure

4.7A and B). While a more wind-driven surface flow is clearly visible during weaker tides

in response to the more easterly prevailing wind (seen in Figure 4.4A) which considerably

moved the shear region to the west indicating a shift of the PL eddy westward (Figure

4.7D).

Panay Tip (PT) Eddy Figure 4.8A shows that semidiurnal tidal variability domi-

nates sea level during the intensive survey north of the PT eddy in February 13-14, 2009

(Figure 4.5A). The sequence of synoptic near-surface current maps from the 12 m depth

bin obtained through the tidal cycle, as colored accordingly, are shown in panels B to C.

Starting at low tide (Figure 4.8B), a transect traversing up to the tip of Panay (in blue)

shows a strong wind-driven northwestward flow with maximum speed of 61 cms−1 and a

strong shear near the tip of the headland, an indication of a PT eddy in that area. At

flood tide (in purple), a strong northwestward flow near the tip of the headland is evident

with shift of the eddy to the east toward the coast as the tidal height attains a maxima on

February 13, 2006 at 1600-hour period. During the subsequent ebb tide (Figure 4.8C, top

left), the flow near the tip of the headland veers southwestward and consequently shifts

the eddy away from the coast. This oscillation in the current pattern goes on through the

tidal cycle. The eastward current towards the coast during flood tide and the westward
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current away from the coast during the ebb tide are consistent with the tidal current

extracted from the surface current inferred from the HFDR, despite the fact that regions

close to the coast were disregarded due to Geometric Dilution of Precision (GDOP).

4.4.1.2 RIOP-09 Cruise Hydrographic data

The TRIAXUS survey near the Panay tip (Figure 4.9) did not coincide with shipboard

ADCP. The survey observations started during the slack water at low tide and continued

to the flood and ebb tide period as colored accordingly in the sea level measurements in

Figure 4.9A. Distributions of temperature, salinity and density show doming of isolines

indicating the PT eddy structure captured near the headland, specifically during the

1200-1300 hour survey and during 1700-1800-hour survey. The doming is associated with

high chlorophyll concentration with stronger signal at the dome (1200-1300-hour) during

flood tide when the current velocity is stronger and the eddy reached deeper (about 100

m) in the water column (Figure 4.9 E)).

Thalweg Distributions A Thalweg section between Mindoro and the Panay straits

spanned a 15-hour period during the ebb tide covering a distance from 0 to 87 km (08-

Feb-2009 14:01:00 to 08-Feb-2009 21:00:00) and the flood tide at the rest of the transect

(08-Feb-2009 21:00:00 to 09-Feb-2009 05:01:35) (Figure 4.10). An examination of this

section directly over the channel and across gap between islands provides insight into

tidally and wind-driven processes.

During ebb tide, an intrusion of warm and fresh water from Mindoro in the upper 50

m is clearly visible particularly in the salinity profile (Figure 4.10 C, bottom) reaching

about 90 km south of the transect. A significant change however is notable at 40 km

past the island of Mindoro, eroding the minimum salinity signature concurrent with the

intensified southwestward surface current and a 70 m depth core of strong flow toward

the Mindoro Strait from the current profile (Figure 4.10 B). This is accompanied further

by outcropping of isotherms and isopycnals indicating an enhanced vertical mixing due

to intensified northeasterly wind in the gap between the islands. A relatively weak and

directionally variable surface current in the lee of the islands of Caluya and Sibay notably

formed a weak stratification but as flood tide arrives and the survey track crosses the

channel towards Panay Island, a stronger outcropping of isolines occur at about 100 km
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followed by a doming which uplift the isotherms and isohalines by 50 m from 100 m

depth. These outcropping of isolines in between islands centered at 70 km and 110

m is due to the wind and tidally-driven flow within these channels. Associated with it

is an elevated chlorophyll concentration in the upper 80 m of the water column, more

so in the section near south Mindoro where two principal rivers, namely Busuanga and

Lumintao, drain that may supply nutrients, supporting higher biological productivity in

the region. At 120-160 km, the resulting doming of the isolines is due to the PL cyclonic

eddy captured during the survey (Figure 4.10 A).

4.4.1.3 T/S Distributions

The direct connection of the Philippine internal seas to the western Pacific are through

the shallow San Bernardino Strait, with a sill depth of 92 m, Surigao Strait, with sill

depth of 58 m and the deeper Luzon Strait with sill depth of 2200 m. The data from the

western Pacific adjacent to San Bernardino Strait displayed a pronounced salinity maxima

(s-max) in the 50 to 250 m depth range, 15 to 26 ◦C temperature interval (Figure 4.11

C) that marks North Pacific Subtropical Mode Water [Hanawa and Talley, 2001].

In comparison, the temperature/salinity (T/S) profile within the Panay Strait region

(Figure 4.11 B) shows a weak signal of the North Pacific Subtropical s-max while enter-

ing into the confines of the Mindoro and Tablas Straits. At the surface, there are two

characteristic water masses, the salinity minimum (s-min) brought by lighter freshwater

drained by two principal rivers south of Occidental Mindoro, and the relatively colder

and saltier water mass due to shallow upwelling/doming that generates PL and PT ed-

dies and the intense turbulent mixing in gaps between islands. Since the s-min layer lies

well above the sill depth in Mindoro Strait, intrusion of this water mass was captured as

subsurface flow into the Panay Strait and further south to the Sulu Sea Basin.

At the Mindoro Strait section of the Thalweg, the s-max core is greatly weakened, shown

as slight T/S bend near 25.5 ◦C at 70 m and near 24 ◦C at 110 m in the Tablas Strait.

A deeper s-max in the 150 m near 16 ◦C however are depicted in all survey tracks,

indicating access of Pacific water via the Mindoro and Tablas straits through the Verde

Island Passage.
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4.4.1.4 Coastal circulation and hydrographic response to atmospheric forcing

Over the NW corner of Panay Island, as the NE monsoon winds are channelled through

the river valley, a narrow intense wind jet forms over the Pandan Bay. This offshore wind

component directly forces water in the longshore direction. In response, sea level and

temperature in front of the mountain gap drops significantly, as observed in the shallow

pressure gauge (Figure 4.12, top).

This seasonal cycle is an obvious feature in the sea level and temperature records in

response to the reversal of the monsoon wind and clearly defined wet and dry periods

in the Philippines. The maximum wind occurs during the NE monsoon regime with

magnitude greater than 15 ms−1 concurrent with the lowest sea levels and temperatures

that reverses during the SW monsoon. However, in April though northeasterly wind

still prevails, both sea level and temperature increases as the region experiences a hot dry

summer months (February-April) with generally less rainfall. The salinity is forced mainly

by local freshwater discharge from the land (Figure 4.12, bottom), closely following the

wet season that starts in May to October due to the summer monsoon that brings heavy

rains to the archipelago, and due to the intermittent occurrence of tropical typhoons.

From the data, two typhoon events were captured, which considerably decreased the

salinity readings, during Typhoon Fengshen, known in the Philippines as Typhoon Frank

in June 18-13, 2008 that heavily flooded the Panay Island and during Tropical Storm

Higos, known in the Philippines as Tropical Storm Pablo in September 29-October 2,

2008.

Seasonal rainfall in the Philippines is known to be modulated by the El Niño Southern

Oscillation (ENSO) phenomenon, with ENSO warm (cold) events frequently contributing

to drought (excessive rainfall) in many areas. On the regional-scale however, a seasonal

rainfall signal reversal was observed affecting the north-central Philippines [Lyon et al.,

2006]. The weak signal in 2008 may be attributed to a reasonably strong La Niña that

peaked during February-March 2008, which brings less rainfall to Panay Island, in the

central Philippines.

The 24-hour repeated shipboard ADCP surveys were averaged to suppress tidal variations

and to infer flow generated by wind forcing. Off the coast of Pandan, the mean current

weakens and veers with depth to the right of the prevailing wind, indicative of Ekman
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dynamics (Figure 4.13A and B). Recall that Ekman layer velocities get more and more

perpendicular with the direction of the wind as the water depth reaches the bottom of the

Ekman depth. This Ekman transport is seen to reach about 50 m shown as northward

flow (Figure 4.13 B, red contour) with about 15 cms−1 speed (Figure 4.13 A, with contour

line), except at the southwest corner of the survey tracks where a southward retroflection

(blue contour at 30 m distance) indicates the structure of PT eddy. This current is

comparable with the Ekman drift calculated using the wind stress from COAMPS (not

shown) estimated by:

ue =
τ y

fρHe

ve = − τx

fρHe

(4.2)

where ue and ve are zonal and meridional components, τx and τ y are zonal and meridional

surface wind stress, ρ = 1025kgm3 is water density and He = 50m is the Ekman layer

thickness.

A smaller band of positive wind stress curl at the northern tip of Panay (Figure 3.10

in Chapter 3) suggests Ekman pumping as the mechanism that generates the cyclonic

PT eddy. And since the region is mainly driven by monsoon reversing winds, it can be

considered as persistent and permanent feature similar to the PL eddy during the NE

monsoon regime.

4.4.1.5 Satellite Imagery

MODIS Sea Surface Temperature (SST) 7-day composite images for February 7 to 13,

2009 show cooler SST (Figure 4.14, left) collocated with the intensified winds over Tablas

Strait in between Mindoro and Panay and at the northwest tip of Panay that blows di-

rectly offshore, and warmer SST in the calm lee of Panay Island. In response to intensified

winds, mean GHRSST SST data shows a remarkable tongue of cooler water advected by

PL eddy over the Cuyo shelf .
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The mean profile of water properties from repeated cross-shore surveys near the center of

PL eddy shows doming of the isoline contours indicating upwelling of cooler and saltier

waters to about 40 m (based on σt = 22.5) excursion near the core (Figure 4.15). This

eddy feature was associated with a subsurface chlorophyll maxima (0.045 mg/m3) found

well above the thermocline, with the mixed layer concentration near the core two times

greater than the periphery of the eddy.

The satellite imagery provided real time support to the cruise and confirmed the cooling

and enhanced chlorophyll concentration over the Cuyo shelf region (Figure 4.16). The

seasonal and spatial variations of chlorophyll concentrations, SST, wind fields and wind-

induced Ekman pumping over this region were apparent in the 7-year monthly mean

remote sensing measurements from October 1997 to December 2004 [Wang et al., 2006].

The seasonal variation of chlorophyll concentrations and SST distributions were asso-

ciated with the seasonally reversing monsoon winds. The winter (December-February)

phytoplankton blooming and the tongue of the cold waters were correlated to the vertical

upwelling of cold and nutrient-rich waters drawn by the NE wind. The center of the

blooms and location of cold tongues in the gaps between Mindoro and Panay coincide

with the maximum of the wind speeds and the Ekman pumping velocities, consistent

with the observational results in this study.

Previous studies during the transition to the NE monsoon (October) identified Cuyo

Shelf as having abundant fish larvae and inferred it to be a major source of larvae to the

Sulu Sea. This is an important information needed to establish an ecologically functional

network of Marine Protected Areas (MPA) over the region [Campos et al., 2008].

The survey tracks measuring the water property distribution of the PT eddy did not

perform multiple iterations along with the shipboard ADCP thus no mean profile was

computed. However, a synoptic profile of temperature, salinity and density clearly re-

vealed a doming of isolines of 50-55 m excursion near the core indicating the cyclonic

PT eddy feature (Figure 4.9). This clearly altered the vertical phytoplankton biomass

distribution as indicated by increased chlorophyll concentration near the core/doming.
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4.5 Summary and Conclusion

In this paper, the response of the coastal ocean to forcing by tides and winds were

investigated. Measurements in Panay Strait captured the predominant surface flows

composed of the cyclonic Panay lee (PL) eddy, a northward Panay coastal (PC) jet

which flowed along the coast, then branched and veered westward while another branch

flowed further up north, retroflects and forms the small cyclonic Panay tip (PT) eddy off

the promontory. The narrow intense wind jet through the mountain gap blowing directly

offshore over Pandan Bay generated an Ekman current, reinforcing a branch of the Panay

jet which comprises the eastern limb of the PT eddy.

Panay Strait has a semidiurnal tidal cycle based on measurements from the moored

shallow pressure gauge. Repeatedly mapping subregions covering the PL and PT eddy

resolved tidal variability. During flood tide, the PL eddy has an intensified near-surface

flow over the shallow Cuyo shelf while at about 200 m over the deep channel during ebb

tide. The spring tides generate an intensified flow and enhanced mixing over the shelf.

Tidal oscillation is evident for the PT eddy. It shifts eastward towards the coast during

the flood tide and westward away from the coast during the ebb tide. A considerable

deepening of the PT eddy is also evident reaching the depth of about 100 m during flood

tide and only about 50 m during ebb tide.

The PL eddy is significantly bigger, about 100 km, than the PT eddy, less than 15 km in

diameter. Since the PL eddy was within the HFDR coverage, details of its generation and

evolution were well examined and discussed using inferred surface currents in high spatial

and temporal resolution during the NE monsoon. Due to Geometric Dilution of Precision

(GDOP) (see Chapter 3), the PT eddy was outside the reduced HFDR coverage thus the

formation mechanism was inferred from in-situ shipboard measurements and real-time

COAMPS ocean forecast provided during RIOP-09 cruise. Based on the observations

and model data, formation and evolution of the PT eddy was inferred to be similar to

the PL eddy, that is due to positive wind stress curl that may induce a divergent surface

flow which in turn uplifts the thermocline and creates a pressure gradient that spins-up

this geostrophic eddy. A branch of Panay coastal jet as its eastern limb was reinforced

by the Ekman current driven by the wind jet through the mountain gap blowing directly
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offshore over Pandan Bay. Since both are generated during the NE monsoon they tend

to be permanent features that persist during this wind regime.
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Figure 4.1: Bathymetry and TRIAXUS survey transects (solid thick line in red, green
and blue) for the Panay Strait region during RIOP-09 in February 8-15, 2009. Marked
are the 3 HFDR, SPG located just in front of the north and south HFDR sites, moored
ADCP and the nearby Caticlan airport. The 200m, 500m, and 1000m isobaths are

indicated by thin gray lines.
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Figure 4.2: Bathymetry and shipboard ADCP tracks for the Panay Strait region
during RIOP-09 in February 8-15, 2009. The survey region over Pandan bay close to
the coast was repeatedly mapped for over a 24-hour period. The 200m, 500m, and

1000m isobaths are indicated by thin gray lines.
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Figure 4.3: (top) Surface current from HFDR and from shipboard ADCP. (bottom)
Major surface flows observed are the cyclonic Panay eddy, the northward Panay coastal

jet and the small cyclonic eddy at the tip of Northwest Panay peninsula.
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Figure 4.4: Near-surface current from shipboard ADCP 12 m depth bin and the pre-
vailing wind from the Caticlan airport during two successive surveys on (top) February
8-10, 2009 and (bottom) February 12-15, 2009. The sampling time from start to end are
shown with increasing lighter shadings. The current and wind vectors are color-coded

accordingly.
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Figure 4.5: Measured tidal height at Pandan, Antique, Philippines for February 2009.
The location of the shallow pressure gauge is indicated in Figure 4.1 marked with red
dot. The blue line represents the tidal height during the survey period, February 8-14,
2009 while the red portion is the tidal height when the two TRIAXUS sections were

covered.
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(a)

(b) (c)

Figure 4.6: (A) Measured sea level at Pandan, Antique, Philippines for the period
of February 9-10, 2009. The colored portion of the tidal series are the tidal height
during the period that multiple iterations of each cross-shore transect were covered,
from transect 1 to 4 as colored accordingly. Current vectors during (B) flood and (C)
ebb tide from 10 m, 50 m and 100 m (colored) and from 130 m and 150 m (gray) are

shown. The color shade from light to dark as it goes deeper.
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(a) (b)

(c) (d)

Figure 4.7: Speed (left panel) and direction (right panel). Left panel were sampled
during flood tide while the right panel were sampled during ebb tide. Positive values
are from northeast to northwest direction and negative values are from southeast to

southwest direction. -180(◦ and 180(◦ is westward while 0(◦ is eastward.
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(a) (b)

(c)

Figure 4.8: (A) Measured sea level at Pandan, Antique, Philippines for the period of
February 13-14, 2009. The colored portion of the tidal series are the tidal height during
the period that the (B) tip of Panay and (C) multiple iterations of each survey tracks
were performed, as colored accordingly. The near-surface currents from 12 m depth bin
were labelled with time in hours, left panel (C) were sampled during ebb tide while the
right panel (C) during spring tide. The prevailing mean daily wind during February

13-15, 2009 from the nearby airport is shown (blue to green color).
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(a)

(b) (c)

(d) (e)

Figure 4.9: (A) Measured sea level at Pandan, Antique, Philippines for the period of
February 13-14, 2009. The colored portion of the tidal series are the tidal height during
flood (B) and ebb (C) tides TRIAXUS survey. The overlapping tracks were colored in
gray during flood tide. The points are labelled with time in hours. (D) Temperature,
salinity, (E) density and chlorophyll profiles from survey tracks covered above. Vertical

dotted lines indicate the time on the tracks.
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(a) (b)

(c) (d)

Figure 4.10: (A) Wind vectors at Caticlan airport, surface current vectors and (B)
velocity profile (top: speed, bottom: direction) from the shipboard-mounted 150-KHz
ADCP system. For direction, positive values are from northeast to northwest direction
and negative values are from southeast to southwest direction. -180(◦ and 180(◦ is
westward while 0(◦ is eastward. (C) Temperature, salinity, (D) density and chlorophyll
concentration from CTD and fluorometer attached to TRIAXUS through the thalweg

section.
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(a)

(b) (c)

Figure 4.11: (A) The TRIAXUS survey tracks for Panay Strait region during Febru-
ary 8-14, 2009. (B) The Temperature and salinity obtained by CTD attached on TRI-
AXUS and (C) overlaid by temperature and salinity from CTD casts during March
2009 regional cruise showing characteristic water masses from Pacific Ocean and Tablas

Strait.
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Figure 4.12: (top) 6-day medianed sea level anomalies (cm) and temperature (red
line, (◦C/10) ) from Pandan shallow pressure gauge overlaid with wind vectors (ms−1)
from the closest QuikSCAT data. Correlations, R between zonal, U and meridional, V
wind component with sea level (left) and temperature (right) are indicated on the top

of the plot. (bottom) The corresponding salinity (psu) anomalies.

74



Chapter 4. Coastal sea response to atmospheric forcing in Panay Island, Philippines

(a)

(b)

Figure 4.13: The 24-hour mean velocity profile from the NW corner of Panay Island.
(A) Current vectors from 10m, 75m, and 125m with increasingly lighter shadings. (B)
On top is the speed while on the bottom is the direction. Positive values are from
northeast to northwest direction (white to red contour) and negative values are from
southeast to southwest direction (white to blue contour). The y-axis is the distance

marked in Figure 4.23 A.
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Figure 4.14: Sea surface Temperature (SST) for the Philippine Archipelago. The
image is a 1 km composite of MODIS Aqua sensor image for the period February 7 to
13, 2009 (top) and the 6 km daily Group for High Resolution Sea Surface Temperature
(GHRSST) Level 4 SST data (daily mean values provided by Physical Oceanogra-
phy DAAC (http://podaac.jpl.nasa.gov/dataset/UKMO-L4HRfnd-GLOB-OSTIA) av-

eraged over the same time period (bottom).
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Figure 4.15: Mean profile of temperature, salinity and chlorophyll concentration
across the PL eddy during the hydrographic survey (February 8-9, 2009).
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Figure 4.16: The Sea Surface Temperature (SST) 1 km MODIS Aqua Imagery com-
posite images and the Chlorophyll concentration merged (MODIS, MERIS, SEAWIFS)

composite images of Philippine archipelago for February 20 to 26, 2009.
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Chapter 5

Barotropic and baroclinic tides in

Panay Strait, Philippines

5.1 Abstract

The Panay Strait constitutes a topographically complex system with intense tidal cur-

rents. The four major tidal constituents in the total energy spectra inferred from sea level

and current profiles are K1, O1, M2, and S2. Spatially, O1 and M2 dominate over K1 and

S2, respectively. The diurnal tide accounts for highest amplitude variability over the shal-

low shelf while semi-diurnal tides over the deeper channel of the strait. Rotary spectra of

surface currents shows inertial frequency peaks and exhibit an unusually broad peak in

both the clockwise (CW) and counterclockwise (CCW) rotating components, indicating

frequency shift by the vorticity of sub-inertial currents prevalent in the region. Vertically,

variance of the horizontal velocity explained by the major tidal constituents peaks in two

distinct depth bands; the upper layer centered at 110 m (11% variance) dominated by

semi-diurnal tide (M2) and the lower layer at 470 m (26% variance) dominated by diurnal

tides (O1). Semi-diurnal tidal current ellipses (M2 and S2) exhibit a dominance of CW

motions at near-surface depth (110m), indicative of downward energy propagation and

implying a surface energy source. These features from Acoustic Doppler Current Profiler

(ADCP) deployed close to the sill is consistent with the dominant semi-diurnal tide (M2)

over the channel of the strait from the High Frequency Doppler Radar (HFDR). Com-

parison of incoherent to coherent tidal energy shows K1 dominated the incoherent tidal
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band. Spatially, incoherent energy is dominant over the channel particularly near the sill

and the constricted part of the strait. The incoherent portion of the tide is presumably

attributable to the surface expression of the internal tide which seems to be generated

near the sill and then topographically steered west over the edge of the shallow shelf

where incoherent energy is dominant.

5.2 Introduction

Tidal currents constitute the most ubiquitous signal in the coastal ocean. They can

be difficult to interpret as they vary at multiple topographic scales. The Philippine

archipelago bounded by the Pacific Ocean on the east and South China Sea (SCS) on

the west, consists of a complex array of islands, embayments and seas connected by

multitude of straits and sills. The barotropic (depth-independent) tidal components are

significant in the region with strikingly different geographical structures, dominated by

semi-diurnal tides in the Pacific and diurnal tides in the SCS. Within the Philippines,

strong barotropic tidal flows through many of the passages reflect the substantial tidal

surface height differences between the Pacific and SCS, as well as acceleration through

topographic constrictions.

Tidal currents flowing over topography in a stratified ocean give rise to baroclinic internal

tides. In the interior Philippine seas, the largest known internal tide sources are in the

Sibutu Passage, south of Sulu Sea (SS)[Zhang et al., 2010]. A strong surface signature

was illustrated by the Moderate Resolution Imaging Spectroradiometer (MODIS) true

color sunglint image of the western SS [Hurlburt et al., 2011] and simulations of tides in

the Philippine archipelago clearly represent this surface signal and further indicates that

internal tides are pervasive within the Philippine seas. Jackson et al. [2011] found internal

waves observed by satellite imagery and Girton et al. [2011] from in situ data in several

areas within the Philippine archipelago. Likewise, Apel et al. [1985] found internal tidal

beams generated in Sibutu Passage that propagate across the SS.

Aside from the well-known solitary wave occurrences in the SS [Apel et al., 1985; Hurl-

burt et al., 2011; Tessler et al., 2010] and the Sulu Archipelago [Jackson et al., 2011],

concentrations of nonlinear internal wave activity on the shelf region (Cuyo Shelf) at
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the northern end of the SS between Palawan and Panay islands was observed in syn-

thetic aperture radar (SAR) and optical sunglint satellite imagery ([Jackson et al., 2011].

These waves dissipate over the shallower shelf region after 2.5days of traveling from sev-

eral locations in the Sulu Archipelago [Jackson et al., 2011]. Simulations of tides in

the Philippine seas by 1/12◦ Hybrid Coordinate Ocean Model (HYCOM) also note the

strong sea surface height signature of internal tides in Mindoro strait [Hurlburt et al.,

2011]. Internal wave measurements from two McLane Labs moored profilers (MMP) at

either end of Mindoro-Panay Straits illustrate some similarities and dramatic contrasts

over fairly short distances within archipelagic topography. There are more energies to

both the diurnal and semidiurnal frequency band in Mindoro Strait to the SCS while

at lower (sub-inertial) frequencies with larger isopycnal displacement at depth, south of

Panay Strait entering into the SS [Chinn et al., 2012].

The Panay Strait serves as the major path way of water from the SCS via the Mindoro

Strait to SS (Figure 5.1). A small basin ( 1300m deep) known as the Semirara Sea

separates the Panay Strait from the Mindoro Strait on the northwest and Tablas Strait

on the northeast. A sill of 578 m depth forms the shallowest point within the strait.

Defining the 100m isobath as the outer edge of the shelf, Panay Strait is bordered by

the wider Cuyo shelf on the west and the very narrow Panay shelf on the east. On the

shelf lies the low lying Cuyo Group of Islands and extensive reefs. The Panay Strait

thus constitutes a topographically complex system of small low-lying islands, seamounts,

shelves, sills, and a deep basin that may be a locale of intense tidal currents.

This study is primarily directed towards determining the structure of the barotropic

and baroclinic tide in Panay Strait. Knowledge of oceanic processes, specifically tides is

important to understand their specific impact on the currents, stratification, and nutrient

distributions in the region.

5.3 Methods

For the description of tidal sea level and current oscillations, data from HFDR measure-

ments, one moored ADCP and two shallow pressure gauges (SPG) were used. Their

record lengths vary from 368 to 646 days (Figure 5.2) with about 142 days of overlap.

81



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

Failures in HFDR occurred at sites due to electrical power loss primarily because of burned

power cables and generator failures during black-outs. In times when data are lost from

one site, two sites were used to calculate vector currents. During the deployment period,

the largest data loss was during the bistatic calibration performed from December 22,

2008 to January 9, 2009. Moored instruments were deployed and retrieved at different

times, and overlaps of uninterrupted coverage were selected for analysis.

The HFDR current vectors underwent minor quality control prior to the analysis. Missing

data segments were subject to temporal interpolation [Chavanne et al., 2007] in which a

constant linear trend and sinusoids at M2, K1 and inertial frequencies were least squares

fitted to the observations available in a 3-day window centered on each missing data

segment shorter than 36 hours. The fit was performed only if more than 36 observations

were available. This interpolation was carried out on hourly vector currents.

In conjunction with the HFDR, an ADCP mooring was deployed as part of the Ex-

ploratory Cruise on the R/V Melville in June 2007 to provide aspects of the full three-

dimensional circulation in Panay Strait. An upward-looking RDI Teledyne Long Ranger

75-kHz, bottom mounted ADCP (11.2790 ◦N , 121.9244 ◦E) was located inside the re-

gion covered by HFDR, 2.5 km downstream from the narrowest constriction at Panay

Sill of 578 m water depth. The passage width is 36 km determined between the 100

m isobaths on either side of the mooring as surveyed by multibeam echosounder. The

ADCP included pressure and temperature sensors. Sampling rates were set to resolve the

tides, and were 30 minutes for the ADCP and 15 minutes for the temperature sensors.

The mooring was recovered in March 2009.

The ADCP returned 100 % of the velocity time series. However, due to surface reflec-

tion contamination, the bottom-mounted ADCP was unable to resolve the near surface

velocity (upper 50 m). Pressure time series were used to correct for mooring blowover.

The velocity data were then linearly interpolated onto a 10 m depth grid and a common

time base of 1 hour.

As part of the PhilEx program, an array of shallow pressure gauges was deployed at

approximately 5 - 10 m depth along Panay Strait (Pandan and Tobias Fornier, Antique).

The location, deployment period and length of observation of the pressure gauges are

provided in Figure 5.1 and (Figure 5.2). Absolute pressure is measured every ten seconds

by a Paroscientific quartz pressure sensor with an accuracy of 0.3 mb (-1 % of the signal).
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The data were averaged into hourly bins and were used to examine possible influences of

sea level to the tidal variations in Panay Strait.

Spectral analysis is useful to partition the variance of a time series as a function of

frequency [Emery and Thomson, 2004]. The present study utilizes power spectrum of sea

level and rotary spectral analysis [Gonella, 1972] to the HFDR-derived surface current and

current profile from the moored ADCP. These provide estimates of power (energy density)

distributed over a range of given frequency bins [Press et al., 1996]. Spectral estimates

were spatially-averaged for surface currents and vertically-averaged for the ADCP current

profile. The sea level spectra were further assessed to extract the tidally-driven current

from the time-series data.

HFDR and ADCP current components (zonal and meridional) and sea level, were har-

monically analyzed using the T-Tide Matlab package [Pawlowicz et al., 2002] over the

deployment period of each instrument. Four significant tidal constituents (K1, O1, M2,

S2) inferred from sea level were least square fitted to the hourly observations, along with a

constant and a linear trend. The 95 % confidence intervals were computed by a bootstrap

method. Maps of tidal current ellipses, major axis amplitudes and phases will be use to

characterize the surface tidal currents.

5.4 Results and Discussions

5.4.1 Tidal components inferred from sea level

Phase-locked tidal sea level explains 95.1 % and 96.9 % of the total sea level variance over

a year (425 days) from hourly records from Pandan and Tobias Fornier, respectively. The

frequency spectra of sea level variations shows energy peaks at four major constituents

(K1, O1, M2, and S2) (Figure 5.3).

The contribution of major constituents to the total energy spectra of sea level is shown

in Figure 5.4. An increase in the variance is largely attributed to K1, O1, M2, and S2,

respectively. These four major constituents will therefore be use to extract tides for

analysis.
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5.4.2 Horizontal structure of the tidal components inferred from

HFDR

The most energetic surface current variations for periods shorter than 5days are inertial

and tidal currents. The spectral properties of surface currents within the radar domain

shows diurnal peaks centered on K1 and O1, semi-diurnal on M2 and S2, and inertial

frequency on fi with period of 62 hours ( 2.59 days) at 11.1◦N (Figure 5.5). The O1, K1,

M2 and a much weaker S2 are the most significant with minor contributions from other

constituents. Higher harmonics of diurnal and semi-diurnal constituents also display

significant peaks.

The rotary spectra decomposes a vector time series into CW and CCW rotating com-

ponents by frequency. At near-inertial periods, the CW predominates in the Northern

Hemisphere due to the action of the Coriolis force to the right of the velocity vector.

This is evident in the spectrum where inertial frequencies have more energy in the CW

rotating band as expected and are unusually broad (maximum 1.46 m2s−2.cph−1), pos-

sibly frequency-shifted due to vorticity of sub-inertial currents (see Chapter 3) and the

forcing by wind, both prevalent during NE monsoon [Pullen et al., 2008]. For diurnal

and semi-diurnal frequency bands, CW motions are also more energetic than the CCW

components by 1.47 m2s−2.cph−1 and 1.18 m2s−2.cph−1, respectively.

Variance explained by the four major tidal constituents constitute 5.7 % and 9.4 % of

the total variance of zonal and meridional current components over the 1-year record,

respectively (Figure 5.6). The highest variance for the zonal current component is over

the deep channel further south of the sill and for the meridional component north of

the sill near a sharp bend in bathymetry where the Island of Batbatan is located. The

semidiurnal tide contributed much to the highest variance over the deep channel while

the diurnal tide over the shallow shelf (Figure 5.7).

To determine the relative contribution of the tidal currents to the mean kinetic and

mean eddy kinetic energies (EKE), those parameters were calculated and are shown in

Figure 5.8. The tidal currents, up and vp were formed from the four major tidal current

constituents analysed. EKE tends to be greatest where the mean circulation is strongest

west of the radar domain, over the shelf but low on the east along the coast. This implies

that the seasonal PL eddy derived more of its energy from the seasonal return flow as

84



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

a consequence to the positive Ekman pumping generated over this region during NEM

regime and less energy from the persistent Panay coastal (PC) jet as the eastern limb

of the PL eddy. In comparison, the mean tidal current kinetic energy is an order of

magnitude less than both the mean current and mean EKE.

The relative contribution of the tidal currents to the mean kinetic energy was estimated

by the ratio:

Rtmke =
u2p(x, y) + v2p(x, y)

u2(x, y) + v2(x, y)
(5.1)

where u and v are observed current velocities and the overbar denotes a time mean of

over a year record and, x and y denotes the conventional Cartesian coordinates.

Similarly, the contribution of the tidal currents to the mean eddy kinetic energy was

estimated by

Rteke =
u2p(x, y) + v2p(x, y)

u′2(x, y) + v′2(x, y)
(5.2)

where the primed quantities denote deviations from the time mean over a year.

The distributions of Rtmke and Rteke are shown in Figure 5.9, while the distributions of

O1 and M2 constituents, which contribute much to the tidal kinetic energy, are shown in

Figure 5.10.

The contributions of the tidal currents to both the mean current and the mean EKE show

similar patterns though their contribution to the mean eddy kinetic energy is relatively

large (Rtmke = 0.043 and Rteke = 0.0510). The regions with highest contributions are

on the shallow areas of the Cuyo shelf where there are sharp bends in the 100 m isobath

and over which the persistent northward PC jet exists. This suggests the influence of

tidal currents on the PC jet, as it accelerates over the shallow part of the shelf. Another

high contribution is on the west end of the radar domain, where a strong return flow

indicating the PL eddy approaches the 100 m isobath of the shallow Cuyo shelf.

From the 4 major constituents, O1 and M2 contribute the highest to the mean tidal

kinetic energy where O1 dominates over the shallow shelf while M2 over the deep channel
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with sharp bends observed in the 100 m isobath and over which PC jet intensifies as it

approach the narrowest constriction of the strait.

5.4.3 Vertical structure of the tidal component inferred from

ADCP

For the mooring located near the relatively narrow part of Panay Strait, tidal variability

makes up a large part of the velocity signal. The vertically-averaged frequency spectrum

from the ADCP is very similar to the spectrum from HFDR for periods shorter than 5

days showing strong peaks at K1, O1, M2, and S2 tidal components (Figure 5.11). The O1

and M2 constituents dominate the diurnal and semi-diurnal bands, respectively. Strong

energy in the inertial band is absent in the spectrum, presumably because the data in

the upper profile (top 50 m) are missing. This suggests the importance of the local wind

in generating the peaks in the near-inertial motions from HFDR-derived surface current

spectrum.

The large percentage of variance explained by the 4 major tidal constituents (K1, O1, M2,

and S2) are in two distinct layers, centered at 110 m and 470 m for both across and along-

channel tidal current components (Figure 5.12). The highest variance at 110 m (11.32 %)

accounts for the along-channel tidal currents which corresponds to the strong shear where

upper layer flows northward into the SCS while strong southward flow below into the Sulu

Sea during the NEM regime. The M2 constituents mainly contribute to the variance. At

470 m, across-channel tidal currents account for the highest variance (26.33%) which

corresponds with the intense thermocline near-inertial motions suggested to be due to

Parametric Subharmonic Instability (PSI) of the diurnal internal tide found near 400 m

at northern Mindoro Strait in the SCS, which undergoes similar or higher levels of near-

bottom mixing than the Panay sill [Chinn et al., 2012]. Chinn et al. [2012] note that

PSI of the internal tide can only occur equatorward of the critical latitude where half

the tidal frequency is greater than the local inertial frequency (e.g., 14.52 ◦ N for K1 and

13.44 ◦ N for O1 ). Recent observational work under PhilEx program however, has shown

convincing evidence that near the critical latitudes the rates of PSI are vastly enhanced

and may be a dominant part of the redistribution of energy throughout the internal wave

spectrum [Chinn et al., 2012]. The main evidence for PSI was the fortnightly modulation

of the near-inertial band, indicating a signal that is often comprised of both upward and
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downward propagating waves seen near 400 m [Chinn et al., 2012]. The specifics of the

physical forcing that allow it to occur at this particular depth however, are uncertain

and more work is needed to fully understand the dynamics at work in Mindoro-Panay

Strait. The variance explained by mean tidal across-channel currents is attributed mostly

to diurnal tide (O1) over the Cuyo shelf to the west.

The vertical mean kinetic energy, eddy kinetic energy and tidal kinetic energy are shown

in Figure 5.13. In contrast to the kinetic energies from the surface current, the mean eddy

and the mean tidal current kinetic energies are relatively small, an order of magnitude

less and two orders of magnitude less, respectively than the mean current kinetic energy.

The mean current kinetic energy is highest at 520-m depth which corresponds with the

hydraulically controlled benthic overflow derived from approximately 400 m deep in the

SCS that acts to ventilate the Sulu Sea with little seasonal variance [Tessler et al., 2010].

Both the highest mean eddy and tidal current kinetic energies are at 470 m depth where

a PSI-generated near-inertial wave signal was found by Chinn et al. [2012].

The vertical distributions of Rtmke and Rteke are shown in Figure 5.14 with a peak at

110 m and two distinct peaks at 110 m and 470 m, respectively, indicating the dominant

tidal activities at shear depth ( 110 m) during NEM and confirming the PSI-generated

thermocline near-inertial motions at 470 m depth discussed above.

5.4.4 Coherent tides

Harmonic analyses of surface and sub-surface current components (zonal and meridional)

were performed using T-tide Matlab package [Pawlowicz et al., 2002]. Only the 4 major

(K1, O1, M2, and S2) tidal constituents inferred from sea level were least-square fitted to

the observations, along with a constant and a linear trend.

Maps of the observed tidal current ellipses, major axis amplitudes and phases of the

four major constituents (K1, O1, M2, and S2) are shown in Figure 5.15. Tidal ellipses

are a compact method used to describe tidal current variance using major and minor

axes (Amaj and Amin), inclination and phase. The axes describe the magnitude of the

current in 2 orthogonal directions, inclination provides orientation for the axes and phase

indicates time lag from Greenwich when the time vector passes the northern semi-major

axis. Diurnal peaks are more pronounced over the shelf with amplitudes increasing to the
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shallow area. O1 tidal ellipses are elliptical over the shelf, relatively narrow, and aligned

along the channel axes. M2 has broader and more circular tidal ellipses north of the

strait, indicating that rotation is relatively important and/or due to transverse reflection

effects. The M2 major axis amplitudes increase towards the narrow constricted part of

the strait. S2 has similar patterns to M2 though substantially weaker. The large phase

gradients across the HFDR coverage indicate strong reversing tidal pressure gradients

and likely locations of accelerated currents and internal tide generation. This is most

obvious at the deep channel near the sill and at the edge of the shallow shelf with shoals

and promontories.

The vertical structure of the tidal ellipses of 4 major tidal constituents (O1,K1, M2 and

S2) remarkably exhibit two sharp peaks consistent with the location of highest variance

explained by the tides at 110 m and 470 m, suggesting contributions from baroclinic tidal

current. The coherent portion of the semi-diurnal tide (M2) dominates at 110 m while

the coherent diurnal tide (O1) dominates at 470 m, consistent with the PSI of the diurnal

internal tide found at this depth by Chinn et al. [2012].

5.4.5 Ratio of Incoherent to Coherent Energy

Observed ratios of the averaged diurnal and semi-diurnal power spectra for residual cur-

rents and tidal currents are shown in Figure 5.17).

The diurnal frequency band was defined as:

[O1 + 1/T >diurnal >K1 – 1/T]

and the semi-diurnal frequency band as:

[M2 + 1/T >semi-diurnal >S2 – 1/T]

where T is the record length.

The K1 constituent dominated the incoherent tidal band, (note the difference in scale,

Figure 5.17). Incoherent diurnal energy is strong over the northern region of the channel

in between the shoals, slightly further down south towards the sill and again increased

into the Sulu Sea (Figure 5.17A). The incoherent semi-diurnal energy is most significant

in the more confined regions than the diurnal, between the shoals north of the channel
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and further south of the sill. A considerable increase of energy westward is evident,

particularly the incoherent diurnal energy (Figure 5.17B). The incoherent portion of the

tide is presumably attributable to the surface expression of the internal tide, which seems

to be generated near the sill and then topographically steered west over the shallow shelf

where incoherent energies are high.

After removing the coherent tidal component as identified by the least squares fit, the

diurnal and semi-diurnal tidal bands remained the dominant peaks due to incoherent

tidal energy, though K1 now dominates the diurnal tide band instead of O1 (Figure 5.18).

Chinn et al. [2012] found no evidence to support local or remote forcing mechanism for

internal wave generation from their moorings located at both ends of Mindoro-Panay

Strait complex. The highly variable internal wave field from HFDR in between those

moorings over the Panay Strait, even within the small region covered by HFDR, indicates

topographic interactions playing an important role in defining the scales of this variability.

Another notable feature in the spectrum is the higher harmonics of diurnal constituents

that are still apparent.

Vertically (Figure 5.19), over the channel, incoherent diurnal energy dominates the upper

layer and displays a mode 1, two layer structure with a node at 120 m. The incoherent

semi-diurnal energy has more complex modal structure with nodes near the surface and

at 240 m.

5.5 Summary and Conclusion

The combination of long duration and high resolution in space, depth and time data

from multiple instruments (HFDR, ADCP, and SPG) are used to characterize tides in

Panay Strait. The dominant tidal components are K1, O1, M2, and S2. Diurnal tides are

pronounced over the shallow shelf while semi-diurnal tides are seen in the channel and

the shelfbreak. Vertically, tidal currents are baroclinic. The distributions of incoherent

diurnal and semi-diurnal energies vary spatially, which may be related to complex internal

tide generation and dissipation in Panay Strait, suggesting that topographic interactions

may play an important role.

89



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

Figure 5.1: Map of study area. Bathymetry contours are in meters. The color bar
represents color depth in meters. Instrument locations are indicated as follows: HFDR
(red circle), moored ADCP (magenta square), and SPG (yellow diamond). The magenta

dashed lines indicates 75 % coverage of the HFDR.
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Figure 5.2: Temporal coverage of the instruments. The thickness corresponds to the
percentage of grid points with data.
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Figure 5.3: Power spectral density of the time series overlap of a)Pandan and b)
Tobias Fornier SPG.
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Figure 5.4: Increment variance (%) of major tidal constituents. The first 4 marked
dots indicate the variance of (1) K1, (2) K1 and O1, (3) K1, O1, and M2, (4) K1, O1,

M2, and S2.
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Figure 5.5: Rotary power spectra for one year of HFDR data over 212 grid points with
more than 75% temporal coverage. Major tidal constituents and inertial frequency, fi

are indicated on the top x-axis, indicated by vertical dotted lines.

94



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

Figure 5.6: Variance explained by 4 major tidal constituents (K1, O1, M2, and S2).

95



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

Figure 5.7: Variance explained by (top) diurnal and (bottom) semidiurnal tidal con-
stituents.
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Figure 5.8: Mean kinetic energy, eddy kinetic energy and tidal kinetic energy.
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Figure 5.9: Contribution of tidal currents to the (A) mean kinetic energy, Rtmke and
the (B) eddy kinetic energy, Rteke.

98



Chapter 5. Barotropic and baroclinic tides in Panay Strait, Philippines

Figure 5.10: Contribution of diurnal tidal currents, (top) O1 and (bottom) M2 to the
total mean kinetic energy, Rtmke and the eddy kinetic energy, Rteke averaged for over

a year.
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Figure 5.11: Rotary power spectra from vertically averaged frequency spectra from
ADCP. Major tidal constituents and inertial frequency, fi are indicated on the top

x-axis, indicated by vertical dotted lines.
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Figure 5.12: Variance explained by 4 major constituents (K1, O1, M2, and S2).
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Figure 5.13: Mean current, eddy, and tidal current kinetic energies.
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Figure 5.14: Contribution of tidal currents to the (A) mean kinetic energy, Rtmke
and the (B) eddy kinetic energy, Rteke.
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Figure 5.15: (top to bottom) O1, K1, M2, and S2 (bottom) (left column) ellipses,
(middle column) major axis amplitude, and (right column) Greenwich phase of HFDR
tidal current. Counterclockwise and clockwise ellipses are plotted in red and blue re-
spectively. The phase is defined as the lag of the maximum current (along the northern

semi-major axis) with respect to the astronomical phase of M2 at 0◦E.
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(a) (b)

(c) (d)

Figure 5.16: O1, K1, (top) M2, and S2 (bottom), averaged ellipses with depth Coun-
terclockwise and clockwise ellipses are plotted in red and blue respectively.
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(a)
(b)

Figure 5.17: Ratio of incoherent to coherent diurnal and semidiurnal tides as observed
in surface current record.
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Figure 5.18: Rotary power spectra for one year of residual HFDR data over 212 grid
points with more than 75 % temporal coverage. Major tidal constituents and inertial

frequency, fi are indicated on the top x-axis, indicated by vertical dotted lines.
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(a) Diurnal
(b) Semidiurnal

Figure 5.19: Ratio of incoherent to coherent diurnal and semidiurnal tides as observed
in the current profile record.
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Chapter 6

Summary and Conclusion

The internal Philippine seas have a unique oceanographic environment, with complex

bathymetry confined within the intricate configuration of the Philippine Archipelago con-

nected by multiple array of narrow straits. Strong archipelago throughflow interacts with

abrupt changes in bathymetry within and between the basins, swift tidal currents are

present, while the island orographic effects on the monsoonal reversing winds generate an

energetic wake of eddies through Ekman pumping.

The locally generated mesoscale eddies in the lee of major islands occur west of the

Philippines during the stronger and more stable NE monsoon. In the lee of Mindoro

and Luzon Islands, steady monsoon winds form stationary lee eddies while episodically

strengthened wind jets lead to simultaneous detachment of counter-rotating eddies in

the model, with propagation directions dependent on the orientation of the winds during

monsoon surges [Pullen et al., 2008].

The installed HFDR array in Panay Island, south of Mindoro, produces time series of

2-D maps of surface currents with high spatial and temporal resolutions that provide

observations of the dominant surface flows: the steady Panay coastal (PC) jet and the

seasonal cyclonic eddy in the lee of the island. The PC jet is generally northward, in

which variations are mainly influenced by the eddy and the presence of the shallow Cuyo

shelf. In contrast, the cyclonic eddy is highly seasonal, forms during NE monsoon and

intensifies during the peak of the season (December - February) dominating over and

occupying the whole HFDR domain. The shift of the eddy close to the coast results in a
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more southward mean flow and weaker PC jet while a considerable shift westward leads

to an intensified PC jet, which replaces the eastern limb of the eddy.

A synthesis of the HFDR, ADCP, satellite imagery, hydrographic data, and satellite and

model-derived winds provide descriptions of the eddy generation and evolution due to

Ekman pumping without a strong oceanic flow passing the island. The seasonal evolution

of the cyclonic eddy is an oceanic response to the prevailing local wind. The strong wind

jets through Tablas Strait, in between Mindoro and Panay and a calm lee generate a

positive wind stress curl, which in turn induces divergent surface currents and thermocline

uplift. The upwelling of the thermocline due to Ekman pumping reached more than 15

m.day−1 based on the snapshots of wind stress curl calculated from COAMPS wind.

The instantaneous Ekman pumping velocities indicate a wind-induced divergent Ekman

transport, which agrees with the mean divergence calculated from HFDR during the same

time period.

Repeated cross-shore surveys revealed the center of the eddy as a doming of isotherms

and isopycnals. It corresponds well with the near-surface along-shore current shear from

the shipboard ADCP reaching about 130 m, indicating the depth of the eddy. The eddy

formation is evident in the mean vorticity, in which the center coincides with the location

of the largest Ekman pumping and the doming. The correlation coefficient of R=0.50

and R=0.67 between divergence and vorticity with Ekman pumping velocity, respectively

indicate the significant link between these terms.

The temporal variation of each term in the vorticity balance equation averaged over the

specified box shows that the evolution of the vorticity within the vortex core generally

is dominated by frictional processes. The frictional forcing is induced dominantly by the

wind stress curl, driving the cyclonic vorticity growth after a time lag of about 10 days,

while the β term causes the cyclonic eddy to propagate westward.

By comparing the temporal variation of thermocline depth anomaly (proportional to vor-

ticity) with the integrals of the Ekman pumping velocity (proportional to wind stress curl)

and divergence, we find a robust mechanism linking cumulative local wind stress curl to

eddy kinetic energy. Further, unlike vorticity, the Ekman divergence is an instantaneous

response to the positive wind stress curl forcing.
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Chapter 6. Summary and Conclusion

Once generated, the ocean vorticity responds effectively to fluctuating local wind magni-

tude and direction, and to the β term causing the cyclonic eddy to propagate westward.

Eddy shedding however, was not observed unlike in the lee of Luzon and Mindoro [Pullen

et al., 2008] due to the size of the eddy and the limited HFDR coverage. Shedding is

unlikely to occur due to the presence of low lying Cuyo Group of Islands and extensive

shallow reefs that may retard or inhibit further cross-shelf propagation of the eddy by

bottom friction [Pringle, 2001].

A smaller band of positive wind stress curl, downwind off the northern tip of Panay

headland (Figure 3.10 in Chapter 3) also suggests Ekman pumping as mechanism that

generates the cyclonic PT eddy. Similar to PL eddy, this feature may be considered as

persistent and permanent during the NE monsoon regime. Due to limited HFDR cov-

erage, PT eddy was only observed from the shipboard ADCP in which velocity profiles

indicate an Ekman dynamics. Synoptic measurement of currents revealed a tidal oscil-

lation of the PT eddy, which moves towards the coast during the flood tide while away

from the coast during the ebb tide. A corresponding deepening (100 M) during flood

tide and shoaling (50 m) during ebb tide was also observed.

The enhanced chlorophyll concentration coincide with the intensive Ekman pumping in

terms of location and time for both PL and PT eddy. These suggest that the Ekman

pumping that spin-up these geostrophic eddies is important to the blooming of phy-

toplankton. These eddies formed in the lee of the island and headland therefore have

important implications in the determination of locations of high primary productivity

and fisheries.

The barotropic tidal flows in Panay Strait reflect the effect of complex bathymetry as

it accelerates through shallow areas and topographic constrictions. Diurnal tides are

pronounced over the shallow shelf while semi-diurnal tide on channel and shelfbreak.

Vertically, tidal currents are baroclinic. A complex internal tide generation and dissi-

pation indicate the important role of topographic interactions. Further, Panay Strait is

exposed to mesoscale eddies and upwelling. This seasonally varying dynamics may affect

the stratification and thus the generation and propagation of internal tides in this area.
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