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Cautionary Remarks on the Spectral Interpretation of Turbulent Flows 
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Spectral slopes are shown to be only very weak constraints for testing turbulence theories. They are 
primarily a consequence of applying spectral analysis to flows that are not wavelike but contain simple 
structures represented by a broad extension in wave number space. 

INTRODUCTION 

Spectral analysis of turbulent flows and theories that at- 
tempt to explain observed spectra, in particular spectral 
slopes, have for some time now been a major technique in 
attempts to account for turbulent flow behaviour. This note is a 
cautionary one, concerning what we feel is a much over- 
stressed, although easy to measure, aspect of turbulent flows. 

We will show that the shapes of spectra are only very weak 
constraints for testing theories and information concerning the 
structure of flows: for example the positions of fronts relative 
to large-scale coherent structures reside in phase information 
of individual realizations. This is just the information that is 
lost through ensemble averaging to obtain the power spec- 
trum and is not dealt with in spectral theories of turbulence. 

AN EXAMPLE OF SPECTRAL ANALYSIS 

We have chosen for analysis an infrared image of the ocean 
sea-surface temperature. The actual image used is shown in 
Figure la. Details concerning the associated field experiment 
can be found in Flament et al. [1985]. An image was chosen, 
since it provides us with a panoramic view that can be readily 
interpreted visually in a pattern recognition sense, as well as 
data suitable for spectral analysis. Data from a single probe, 
or even a sizable number of probes, cannot provide the neces- 
sary panoramic view needed to recognize the disparity in scale 
between the fronts and eddies visible in this image. The 
number of pixels comprising this image is 256 x 256, with a 
1-km resolution. The center of the image is at 38ø30'N, 
125ø00'W. 

The original image (Figure la) was multiplied by a 25% 
half-cosine window to bring the edge of the frame to a con- 
stant value. The windowed image is shown in Figure lb. A 
two-dimensional Fourier transform was made of this image, 
the phase and magnitude of which are shown in Plate 1 (a, b). 
(Plate 1 can be found in the separate color section in this 
issue.) The azimuthal average of the transform magnitude is 
shown as a spectral density in Figure 2. The spectral slope of 
k -½ differs from the predictions of the spectral slope of tem- 
perature from simple quasi-geostrophic turbulence theories. 
Rather than discussing this discrepancy, we will instead show 
that the spectral slope is only a very weak constraint on the 
dynamics of the flow. 

We are well aware that images of the type shown here are 
not ensemble averages but single realizations of a complex 
turbulent flow. For turbulent flows, ensemble averages are 
usually expressed either in terms of autocorrelation coef- 
ficients or the directly related power spectral density; neither 

Copyright 1985 by the American Geophysical Union. 

Paper number 5C0553. 
0148-0227/85/005C-0553505.00 

retains information about the phase of the Fourier transform 
of each individual realization. This is also the case with spec- 
tral theories of turbulence that deal with power spectra. We 
might ask what other types of realizations, other than the 
original turbulent flow, would have an identical spectral slope. 

Therefore we generated a random phase and used the orig- 
inal magnitude (Plate lb) to compute the inverse Fourier 
transform. The random phase used and the resultant image 
are shown in Plates 2 and 3. (Plates 2 and 3 can be found in 
the separate color section in this issue.) Obviously, there is no 
resemblance between the cloudlike structures of this image 
and the original temperature field (Figure 1). An ensemble of 
such cloudlike structures yields the same average energy spec- 
trum as the jet and associated eddies; a spectral theory of 
turbulence based on a closure for the power spectrum [-cf. 
Charney, 1971] applies equally well to these cloudlike struc- 
tures as to the original temperature field of the geophysical 
flow. 

Now we present three images for which we retain the phase 
information of Plate lb but place less emphasis on the ob- 
served spectrum. Figure 3a is the image produced by applying 
an inverse Fourier transform on the original phase infor- 
mation and a synthetic azimuthally constant spectral density 
of slope k -½. Most of the structure of the original turbulent 
flow can be seen. To further stress the unimportance of the 
spectral slope, we now recompute the images of applying an 
inverse Fourier transform on the original phase and synthetic 
spectral densities with spectral slopes differing from the orig- 
inal k -½ slope. This image processing technique is known as 
coefficient rooting [Andrews et al., 1972-]. Figure 3b shows the 
image computed with a synthetic spectral slope of k -3, and 
Figure 3c shows a similar image with a synthetic spectral 
slope of k-2. 

DISCUSSION 

The effect of changing the spectral slope, yet retaining all 
the phase information, has been to emphasize that the distinc- 
tive signature of the coherent structures in the turbulent flow 
is the relative position of small scales with respect to large 
scales. This is particularly evident in Figure 3c, in which the 
k -2 spectral density has the effect of greatly amplifying the 
magnitude of the small details, in effect a kind of high-pass 
filtering. This is, of course, not new. The line drawings of 
turbulent flows by Leonardo da Vinci, as seen for example in 
Figure 4, contain no magnitude information but only phase 
information. Nonetheless these drawings convey an amazing 
grasp of the essential flow structures. In a different context the 
importance of phase in signals of various kinds has recently 
been discussed by Oppenheim and Lim [1981]. 

The k -½ spectral slope observed in Figure 2 in the wave 
number range of 10-2 to 5 x 10- • km- • is primarily a spec- 
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Fig. 1. (a) Original infrared image of the ocean sea-surface tem- 
perature of a filament and associated eddies off the northern coast of 
California [from Flament et al., this issue]. The image is made of 
256 x 256 pixels with 1-km resolution. (b) Identical to Figure 2a but 
windowed to bring the edge of the frame to a constant value. 

tral manifestation of the existence of intersecting smooth 
gradients. Relative temperature along a north-south line 
through the center of the windowed image (Figure lb) is 
shown in Figure 5. This temperature variation is dominated 
by two intersecting ramps, the transform of which is 

sin 2 kl 
F(k) = 4a 2 

k 2 

The spectral density of this transform is shown in Figure 6; 
the side lobes fall off with a slope of k -•. The azimuthally 
averaged spectral density of an image in which temperature 
variations are made up of smooth intersecting ramps of differ- 
ing lengths will then have a k -• spectral slope, the side lobes 
being smeared out in the averaging. The tapering off of the 
spectral density at spatial frequencies higher than 5 x 10 -• 
km- • is due to instrumental noise of the scanning radiometer. 

CONCLUSION 

These cautionary remarks on the spectral interpretation of 
turbulent flows were prompted by some recent attempts to 
compare satellite-derived spectra with predictions of theories 
of geostrophic turbulence. Deschamps et al. [1981] performed 
a statistical analysis of the sea surface temperature field by 
means of the structure function giving a spatial equivalent of 

the spectral density with power law exponent varying from 1.5 
to 2.3. There is also a long history of spectral analyses of sea 
surface temperature from ships and aircraft, including those of 
Voorhis and Perkins [1966], McLeish [1970], Saunders [1972], 
and Holladay and O'Brien [1975]. Similar spectral analysis of 
sea surface pigment has been made by Gower et al. [1980], 
and problems associated with its interpretation as a dynam- 
ically related quantity, such as temperature, as opposed to a 
passive tracer have been pointed out clearly by Lesieur and 
Sadourny [1981]. The temperature field analyzed in our image 
was in fact a mix of both a dynamically related variable and a 
purely passive one, since off the coast of Northern California, 
large T-S variations exist, and the surface temperature field is 
not consistently correlated with the surface density field• 

The spectral slopes of the analyses above are usually com- 
pared with predictions of two-dimensional or quasi- 
geostrophic turbulence theories, well known examples of 
which are those of Kraichnan [1967], Charney [1971], and 
Salmon [1978]. These theories attempt to model turbulence in 
terms of interactions among different wave numbers, often 
so-called eddies, of the energy spectrum. However, the spectral 
slopes observed are a consequence of the application of spec- 
tral analysis tO structures represented by a broad extension in 
wave number space, as shown for example in Figures 5 and 6. 
The panoramic view provided by the satellite infrared image 
(Figure l a) does not contain a cascade of eddies or an inertial 
subrange, although the power spectrum slope alone might 
lead one to believe that such a subrange were present. 

An essential characteristic of these two-dimensional turbu- 

lent flows is the relative position of small-scale eddies and 
sharp fronts with respect to larger scales such as the offshore 
flowing jet. Flament et al. [1985] argue that the scale of the 
sharp fronts (• 300 m) represents a balance between diffusion 
resulting from small-scale (,-• 30 m) turbulence in the surface 
mixed layer and large-scale (,-• 30 km) horizontal strain appar- 
ent in a sequence of images similar to that shown in Figure 1. 
Saffman [1971] has also shown that the vorticity distribution 
in a field of random two-dimensional vorticity develops dis- 
continuities, and he has calculated the energy spectrum that 
behaves like k -• for large values of the wave number. He 
points out, as does Charney [1971], that the experimental 
evidence is not capable of distinguishing conclusively between 
either a k-3 or k -• dependence. 
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Fig. 2. Spectral density from an azimuthal average of the two- 
dimensional Fourier magnitude shown in Plate la. 
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Fig. 4. Line drawing of a turbulent outfall by L. da Vinci (personal 
communication, 1508) containing no magnitude information. 

Fig. 3. Inverse two-dimensional Fourier transform using phases 
(shown in Plate lb) of the original windowed image and synthetic 
Fourier amplitudes with spectral density slopes of (a) k -'•, (b) k -3, 
and (c) k- •. 

An interesting numerical experiment of Fornberg [1977] for 
two-dimensional decaying turbulence illustrates the possibility 
of significant phase correlations between Fourier components. 
His results showed a k -• spectrum after a sufficiently long 
time. The phases of the Fourier components were then scram- 
bled in a random manner, keeping the magnitude the same, as 
we did in Plates 2 and 3 here. Without the proper phase 

correlations, an "unnatural" burst of high-frequency compo- 
nents is generated, bringing the spectral slope from fourth to 
third power, which eventually relaxes back to fourth power. 

Similar cautionary remarks apply to three-dimensional tur- 
bulence. Flow visualizations by Brown and Roshko [1974] of 
perhaps the simplest such flow imaginable, a developing free 
shear layer, do not exhibit the continuous cascade to smaller 
scales in the sense of the theory of Kolmogoroff [1941]. Re- 
cently, Corcos and Sherman [1984] have accounted for many 
aspects of this flow from a deterministic viewpoint. Nonethe- 
less, this flow has a well-established fully developed turbulent 
k -5/3 pedigree, as has been observed by Champagne et al. 
[1976]. Since the theory of Kolmogorov [1941] is based on 
physical assumptions fundamentally different from the obser- 
vations, the spectral slope alone is inadequate to differentiate 
between theories. 

From the perspective of a Fourier decomposition, the essen- 
tial information regarding structure of the turbulent flow is 
contained in the two-dimensional phase. Unfortunately, phase 
is difficult to interpret (see Plates 1 and 2) and lost through 
averaging to get the power spectrum. Although higher-order 
spectra might well be computed (e.g., bispectra and energy 
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Fig. 5. (Top) Relative temperature on a north-south line through 
the center of the windowed image (Figure lb). (Bottom) Idealized 
temperature on the same north-south line showing dominance of two 
intersecting ramps. 
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Fig. 6. Normalized spectral density of the idealized temperature dis- 
tfibutio• s•ow• i• Figure 5. Side lobes fall off wit• a slope of k -•. 

transfer spectra), and modern statistical theories are based 
around these higher-order spectra, it is not at all clear how the 
crucial phase information is obscured by these higher-order 
averages for coherent structures of varying size. Spectral 
analysis is a straightforward technique, but we are questioning 
the usefulness of its application to flows that are not wavelike 
but contain clearly recognizable signatures of coherent struc- 
tures like jets, developing eddies and associated fronts as in 
the flow analyzed here. These coherent structures will always 
have a broad extension when represented in a Fourier wave 
number space. Equivalent statements can also be made for 
correlations and closure theories based around them, since 
correlations and power spectra are formally related to each 
other. We are concerned that very high order ensemble statis- 
tical quantities are needed to account for existence of fronts or 
intermitency in these flows. Turbulence closure theories at 
even higher order than those proposed now would be increas- 
ingly more obscure. 
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Plate 1 [Arrni and Flament]. Two dimensional Fourier transform (a) magnitude and (b) phase. Only the lower half of the 
transform is shown because the upper half is the complex conjugate, since the original image is real. 
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Plate 2 [Arrn• and Flament]. Random phase uniformly distributed from -n to +n. 

Plate 3 [Armi and Flament]. Inverse two-dimensional Fourier 
transform using the Fourier magnitude (Plate la) of the original win- 
dowed image and the random phase shown in Plate 2. 




