

GRANT OF EQUIPMENT AUTHORIZATION

ТСВ

Certification Issued Under the Authority of the Federal Communications Commission

By:

UL Verification Services Inc. (formerly UL CCS) 47173 Benicia Street Fremont, CA 94538

Date of Grant: 04/19/2022

Application Dated: 04/19/2022

University of Hawaii 1000 POPE RD MARINE SCIENCE BLDG 402 HONOLULU, HI 968222336

Attention: Pierre Flament , Researcher

NOT TRANSFERABLE

EQUIPMENT AUTHORIZATION is hereby issued to the named GRANTEE, and is VALID ONLY for the equipment identified hereon for use under the Commission's Rules and Regulations listed below.

	FCC IDENTIFIER: 2A562-I Name of Grantee: Univers				
	Equipment Class: Licensed	-			
Grant Notes	FCC Rule Parts	Frequency <u>Range (MHZ)</u>	Output <u>Watts</u>	Frequency <u>Tolerance</u>	Emission <u>Designator</u>
	90	4.438 - 4.488	23.66	100.0 PM	48K4F1N
	90	5.25 - 5.275	25.23	100.0 PM	23K1F1N
	90	13.45 - 13.55	15.17	100.0 PM	98K6F1N
	90	16.1 - 16.2	15.0	100.0 PM	98K7F1N
	90	24.45 - 24.65	16.14	100.0 PM	192KF1N
	90	26.2 - 26.42	15.6	20.0 PM	211KF1N

Output power listed is EIRP. This device must be installed to provide a separation distance of at least 10.66m, 3.55m and 2.3m for device operating below 10MHz, between 10-20MHz and above 20MHz from all persons, respectively. It must not be collocated or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures. End-Users must be provided with transmitter operation conditions for satisfying RF exposure compliance.

University of Hawai'i at Mānoa

School of Ocean and Earth Science and Technology Department of Oceanography Radio Oceanography Laboratory

1000 Pope road • Honolulu, Hawai'i 96822

Date: 3/21/2022

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, USA

To whom it may concern:

I, the undersigned, hereby authorize UL Verification Services Inc. to act on our behalf in all manners relating to application for equipment authorization, including signing of all documents relating to these matters. Any and all acts carried out by UL Verification Services Inc. on our behalf shall have the same effect as acts of our own.

I, the undersigned, hereby certify that we are not subject to a denial of federal benefits, that includes FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

In authorizing UL Verification Services Inc. as our representative, we still recognize that we are responsible to:

a. fulfill the requirements for the scope of certification requested, including implementing any appropriate changes requested by UL Verification Services Telecommunications Certification Body (TCB) and / or the FCC;

b. supply any and all information needed for the evaluation of the products for which certification is sought;

c. make claims regarding certification only in respect of the scope for which certification has been granted;

d. not use our product certification in such a manner as to bring the TCB or FCC into disrepute and to not make any statement regarding product certification which the TCB or FCC may consider misleading or unauthorized;

e. discontinue use of all advertising matter that contains any reference thereto and complies with any and all actions required by the FCC upon suspension or cancellation of certification;

f. use certification only to indicate that products are certified in conformity with specified standards;

g. endeavor to ensure that no certificate or report or any part thereof is used in a misleading manner, and any copies of the grants/certificates shall be reproduced in their entirety;

h. comply with the requirements of the TCB and FCC, including the use of marks and label information prescribed for the scope of certification, when making reference to product certification in communication media such as documents, brochure or advertisements;

i. comply with the requirements for certification, supply any information needed for evaluation of products to be certified and, where applicable, make provision for the participation of observers;

j. ensure that products marketed under the scope of the requested certification continue to comply with the certification requirements;

k. provide a sample of a production unit for testing within 30 days of the request should this product be selected as part of either the TCB's or the FCC's market surveillance requirements;

I. keep a record of all complaints relating to product's compliance with requirements of relevant standard; make records available to UL or FCC when requested; take appropriate action with respect to such complaints and any deficiencies found in the product that affect compliance with requirements for certification; document the actions taken with respect to complaints and/or deficiencies;

m. inform the TCB immediately of any changes that may affect its ability to comply with the certification requirements.

This authorization is valid until further written notice from the applicant.

Pierre Flament, Ph.D. pflament@hawaii.edu Principal Investigator Radio Oceanography Laboratory

P.FLANENT

University of Hawai'i at Mānoa

School of Ocean and Earth Science and Technology Department of Oceanography Radio Oceanography Laboratory

1000 Pope road • Honolulu, Hawai'i 96822

Date: 3/21/2022

Attn: FCC Office of Engineering and Technology / UL Verification Services TCB Subject: Limiting of Sales to Customers Aware of Licensing Requirements

To Whom It May Concern:

This letter is provided to explain that the Radio Oceanography Laboratory of the University of Hawai'i at Mānoa limits the sales of its Generic Oceanographic High Frequency Doppler Radar system (G-HFDR, FCC ID: 2A562-MK3-PW-PA-TX), to non-commercial customers who understand that by operating such system, they are performing measurements of distance, direction and speed of ocean currents and waves by means of radio-location.

Before being delivered such a system, customers must demonstrate competence in radio and radar technology by participating in a training workshop organized by the Radio Oceanography Laboratory of the University of Hawai'i at Mānoa.

Customers must also certify that they will apply for a license through the FCC Universal Licensing System and that they understand that their authority to transmit through any radiating antenna or structure is contingent on their license have been awarded.

Pierre Flament, Ph.D. pflament@hawaii.edu Principal Investigator Radio Oceanography Laboratory

P.FLANENT

University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology Radio Oceanography Laboratory

Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit Model MK3-PW-PA-TX Operational Description

> April 2022 v. 10

radlab@satlab.hawaii.edu Marine Sciences Building 1000 Pope road Honolulu Hawai'i 96822

FCC Supplier's Declaration of Conformity

University of Hawai'i Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit, model *MK3-PW-PA-TX*.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by University of Hawai'i could void the user's authority to operate the equipment.

University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology Radio Oceanography Laboratory radlab@satlab.hawaii.edu 1000 Pope road Honolulu, HI 96822, U.S.A Phone (808) 956 7098

Warnings

WARNING

Radio Frequency

Hazard of severe electrical shock or burn. Disconnect power before opening cabinet door.

This device contains potentially dangerous high voltages and high frequency radiation. Operation and servicing is restricted to properly trained and certified personnel.

Maximum output power is 50 W (+0.5dB) for frequencies 8 MHz and below and 30 W (+0.5dB) for frequencies 12 MHz and above.

The user's authority to operate this device if connected to any radiating antenna or structure in the United States is contingent on applying for and being awarded a valid license through the FCC Universal Licensing System before transmitting. This device may not be powered up for testing unless connected to a non-radiating resistive load.

Table of Contents

Generic High Frequency Doppler Radar (G-HFDR)	4
1. Physical principles	
2. System description and schematics	
3. Summary of specifications	
4. Tune-up procedure	10
5. Configuration and operation	11
5.1. Start-up procedure	11
5.2. Toggling between signal types	12
5.3. Power-down procedure	12
6. Antenna design	14
7. Photos of unit	17

Generic High Frequency Doppler Radar (G-HFDR)

1. Physical principles

The G-HFDR is an Oceanographic High Frequency Doppler radar designed with bare minimum features to ensure low production cost, low power requirement, and easy maintenance.

The operation of the G-HFDR consists of transmitting frequency-modulated continuous radio waves that are channeled along the surface of the conducting ocean as ground waves, in the wavelength range of 10 to 100 m (frequency 3 to 30 MHz).

These radio waves are coherently back-scattered by the ocean's surface gravity waves at half the radio wavelength (5 to 50 m), and captured by an array of receive antennas. The backscattered radio waves are shifted in frequency by the Doppler effect due to the sum of the surface wave velocities and the surface current. The velocity of the radial currents in the direction of the G-HFDR is estimated from this Doppler shift.

For "Region 2", the Americas, the International Telecommunication Union (ITU) has recommended and the Federal Communication Commission has allocated dedicated secondary frequency bands for operating High Frequency Doppler radars (Table 1).

Center	Occupied bandwidth
(MHz)	(kHz)
4.463	50
5.2625	25
13.500	100
16.150	100
24.550	200
26.310	220

Table 1. Allocation for Oceanographic High Frequency Doppler radars in Region 2.

The G-HFDR consists of two units or subsystems: the Synthesizer-Transmitter Unit, and an optional Receiver-Digitizer Unit.

The Synthesizer-Transmitter Unit is based on commercial off-the-shelf modules and contains: (i) an ultra-low phase noise reference oscillator (OCXO), (ii) direct digital signal synthesizers (DDS-FPGA), (iii) a power amplifier (PA), (iv) an anti-harmonic filter (LPF), (v) power supplies (PS) and power line filters (RFI). This unit is the subject of the present technical document.

The optional Receiver-Digitizer Unit is based on schematics and engineering drawings published by the Radio Oceanography Laboratory and released in the public domain as Open Design/Open Source. It is a passive homodyne quadrature demodulator to baseband and does not contain any oscillator, frequency synthesizer or RF power amplifier. This unit is the subject of a separate technical document.

The units exchange information with the outside world through ethernet links. Absolute timing, if required, can be provided by the precision network time protocol (*ptp*), encompassing master network-based GPS clocks or atomic clocks.

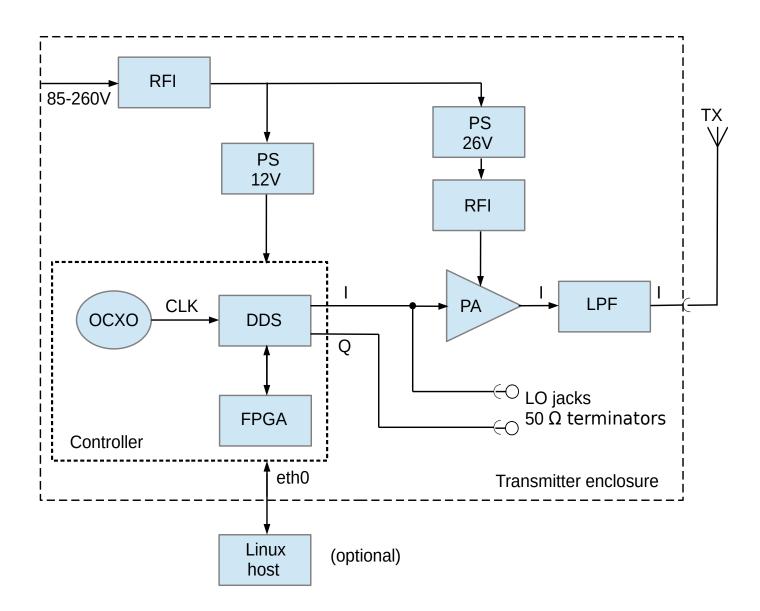
2. System description and schematics

The following modules are integrated to form the Synthesizer-Transmitter Unit (Figure 1):

1. an ultra-low phase noise oven-controlled crystal oscillator (OCXO) fitted with a thermalinertia bell, providing the clock signal to the digital synthesizer. Features: 100 MHz frequency, single side-band phase noise -148dBc/Hz. Manufacturer: Bliley (United States), model N79AoptA. The technical specification are found in appendix 1.

2. a clock-remapping direct digital synthesizer (DDS-C) to correct for frequency offset, aging and drift of the OCXO with a precision of 1 mHz, based on initial factory-calibration against a rubidium clock or optional real-time calibration against network clocks.

3. a two-channel quadrature (I, Q) direct digital synthesizer (DDS-A/B) providing frequencymodulated (chirped) signals. Features: internal frequency 300MHz after base clock multiplication, 48-bit phase register yielding 1 μ Hz tunability, 12-bit digital-to-analog converter, 80 dB SFDR, 27MHz analog low-pass filters resulting in an operating frequency extending to 27MHz. Both the clock-remapping DDS-C and the chirping DDS-A/B are based on Analog Devices' model AD9854 CMOS DDS, integrated by D-Tacq Solutions (Scotland/UK), model RAD-CELF. The technical specifications of this triple DDS radar controller are found in appendix 2 and its schematics are shown in Figure 2 and 3.


4. an embedded processor, combining on the same integrated circuit, a programmable logic gate array (FPGA) and a dual-core sequential processor operating under Linux (ARM Cortex-A9) based on Xilinx' model Zynq-7000. Mother-board integrated by D-Tacq Solutions (Scotland/UK), model ACQ-1001Q.

5. a solid state Class AB MOSFET RF power amplifier (PA) operated in continuous mode (CW). Features: input signal level -10dBm, Maximum output power is 50 W (+0.5dB) for frequencies 8 MHz and below and 30 W (+0.5dB) for frequencies 12 MHz and above. Stable operating range from 0.5 to 150 MHz. Manufacturer: Tomco Technologies (Australia), Model BTM00250-AlphaSA. The technical specifications are found in appendix 3.

6. a 9th order Butterworth power low-pass filter to cancel spurious signal harmonics and aliases. Manufacturer: DLW associates (Missouri, USA). The low-pass filter is built to the specific operating frequency and factory-fit at time of manufacture. The technical specifications are found in appendix 4.

7. switching power supplies manufactured by Traco, including 12V model for the digital electronics (TSP-070-112) and 26V model for the RF power amplifier (TSP-360-124 coupled with TSP-BCM24 battery controller module). The Traco power supplies are rated for an input voltage range 85V to 260V. They feature oscillator dithering to reduce spurious radiated peaks. The technical specifications are found in appendix 5. AC and DC power line filters (RFI) are inserted to mitigate spurious radiated emissions. Standard circuit breakers are added for protection.

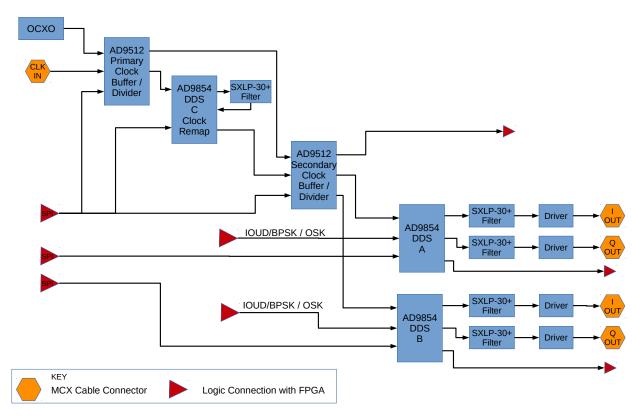

8. a custom-built enclosure rated IP65 in white lacquered aluminum 20x60x75 cm protecting all electronic modules from weather and electromagnetic interference, including 6-point grounding harness for the door. The Synthesizer-Transmitter Unit operates without an active cooling device over an ambient temperature range of -30C to +50C.

Figure 1. Schematics of the Synthesizer-Transmitter Unit. See Table 2 for list of components and references.

Table 2. List of commercial modules incorporated in the Synthesizer-Transmitter Unit

Tag	Description	Reference	Manufacturer
OCXO	Oven-controlled crystal oscillator, 100 MHz	N79A-optA	Bliley Technologies Inc. 2545 W Grandview Blvd, Erie PA 16506 USA
FPGA	Carrier with embedded FPGA&ARM processors	ACQ1001	D-TACQ Solutions Ltd., International House Stanley Blvd, Blantyre G72 0BN Scotland UK
DDS	Triple DDS Radar Controller	RAD-CELF	id.
PA	Radio-frequency power amplifier	BTM00250-AlphaS	ATomco Technologies 38 Payneham Rd, Stepney, Australia 5069
LPF	Power low-pass filter	FLxxMLP-HFDR	DLW Associates 6 Woodford place, St. Charles MO 63301 USA
PS12V	Industrial power supply	TSP-070-112	Traco Electronic AG Sihlbruggstrasse 111, CH-6340 Baar
PS26V	Industrial power supply	TSP-360-124	id.
RFI-DC	EMI Filter with High Attenuation Performance	FN2030M-Z-20-06	Schaffner Holding AG Nordstrasse 11, CH-4542 Luterbach
RFI-AC	EMI Filter with High Attenuation Performance	FN9266-10-06	id.

Figure 2. Schematics of the Triple DDS Radar Controller. See Table 3 for list of components and references.

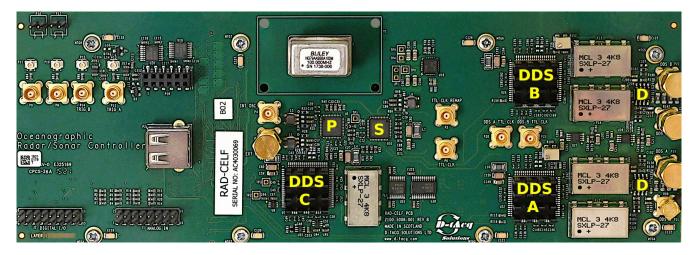


Figure 3a. Photo of the Triple DDS Radar Controller board (top face).

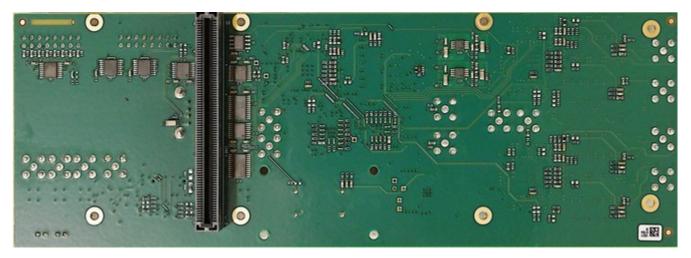


Figure 3b. Photo of the Triple DDS Radar Controller board (bottom face).

Figure 3c. Photo of the carrier board with FPGA (top face; bottom face not accessible).

Table 3. List of functional integrated circuits used in the Triple DDS Radar Controller

Tag	Description	Reference	Manufacturer
P rimary	Clock/buffer divider	AD9512BCPZ	Analog Devices One Analog Way, Wilmington MA 01887 USA
S econdar	y Clock/buffer divider	AD9512BCPZ	id.
DDS-A	Direct digital synthesizer	AD9854ASVZ	id.
DDS-B	Direct digital synthesizer	AD9854ASVZ	id.
DDS-C	Direct digital synthesizer	AD9854ASVZ	id.
Filter	Lumped LC low-pass filter	SXLP-27+	Mini-Ciruits 13 Neptune Ave, Brooklyn NY 11235 USA
Driver	Operational amplifier	OPA2694D	Texas Instruments 12500 TI Blvd., Dallas TX 75243 USA

Note: commodity components (inductors, capacitors, resistors, regulators) used on the Radar controller board have passive functions and do not contribute to the signal generation.

3. Summary of specifications

Signal characteristics:	FMCW linear sweep (chirp)
Emission designation:	F1N
Design operating frequencies:	3 MHz to 27 MHz
Modulation bandwidth:	Max. 2% of operating frequency
Restricted operating frequencies/bandwidth:	firmware-restricted to FCC/ITU allocations
Sweep (chirp) rate, radar mode:	1-5 Hz
Sweep (chirp) rate, call-sign mode:	1 kHz
Master reference clock:	OCXO 100 MHz SC-cut
Single side-band phase noise:	148 dBc/Hz @ 1 kHz or better
Clock frequency stability:	300 ppb or better (1-year, full temp. range)
Conducted output power < 10 MHz:	50 W
Conducted output power > 10 MHz:	30 W
Harmonics at rated power:	2* <i>f0</i> < -70 dB; 3* <i>f0</i> < -80 dB
Supply voltage range:	85 V to 260 V AC, 50-60 Hz
Supply power:	250 W AC
Operating temperature range:	-30°C to +50°C

4. Tune-up procedure

This device has no adjustments to tune output power and reference frequency because these are digitally programmed during the manufacture of the system and drifts are non-existent within the precision of measurements.

Programming the unit is password-protected and reserved to factory-authorized personnel. There are no user-accessible controls to modify the programming of the unit.

5. Configuration and operation

The unit is programmed to emit a repetition of frequency sweeps (chirps), typically at a rate of 1Hz to 4Hz and an occupied bandwidth of 25 to 220kHz determined by the ITU frequency allocation (see Table 1), resulting in a frequency-modulated continuous wave (FMCW mode, emission designation F1N).

The unit is factory-programmed to start transmitting automatically upon power up at the ITU frequency for which a low-pass filter is factory-fitted. To avoid any erroneous operation that could damage the power amplifier and/or the low-pass filter, or result in unlicensed transmissions, all frequencies are factory-disabled, except the ITU frequency for which a low-pass filter is actually factory-fitted to the unit. Programming the unit to other frequencies is password-protected and reserved to factory-authorized personnel.

If a FCC call sign has been provided at the time of factory-configuration, a full-bandwidth broadcast of the call sign is automatically scheduled every 20 min. Chirps at a rate of 1 kHz are transmitted over the same occupied bandwidth, for short periods corresponding to the dots and dashes of the Morse code, resulting in a similar frequency-modulated continuous wave (emission designation F1N).

The unit can be powered-up in two modes of operation: (a) a test mode, for which the output is connected to a 50Ω non-radiating resistive load, or (b), a live mode, for which the output is connected to a radiating antenna or structure. The user's authority to operate this device in the live mode (b) from a location within the United States is contingent on being awarded a license through the FCC Universal Licensing System. In the absence of a valid FCC license, the device may only be operated in the test mode (a).

The firmware allows programming all operations of the digital synthesizer, including chirping, calibration tones and full-bandwidth call-sign broadcast, using a single ethernet web server interface, configured through the Dynamic Host Configuration Protocol (DHCP; Figure 4). The actual settings of the digital synthesizers are continuously read back from the DDS registers and displayed on a separate diagnostic web page (Figure 5).

5.1. Start-up procedure

The following steps must be performed in the order given:

- 1. open enclosure and verify that the frequency of the low-pass unit fitted (figure 9) corresponds to the factory-configured frequency marked on the label (figure 8).
- 2. verify that all breakers are off in the down positions (figure 9).
- 3. for mode (a), connect a power attenuator such as a Bird 100-SA-FFN-30 to the N-type RF output of the unit (figure 12).
- 4. for mode (b), connect the cable to the TX antenna, with a minimum attenuation of 5 dB (figure 12).
- 5. connect a CAT-6e cable from a local network to the RJ45 jack of the unit (figure 12);
- 6. connect a grounded power cable to the IEC-C13/C14 power inlet (figure 12) and plug into a 120 or 240V outlet (the unit auto-detects the voltage).
- 7. connect the power adapter of the heat-exchanger shown in figure 5 into a 120 or 240V outlet (the unit auto-detects the voltage).
- 8. power up the unit and the heat exchanger.

- 9. enable the power surge suppressor by flipping its breaker to the up position (lower DIN rail, figure 9).
- 10. enable the power supplies by flipping all remaining breakers in sequence from right to left to the up position (middle DIN rails, figure 9).
- 11. tie the 6 grounding connections of the door and close the enclosure.
- 12. verify that the network router has provided an IP address through DHCP (waiting 2-3 minutes may be necessary to let the boot sequence complete).
- 13. open browser on this IP address, verify that a screen similar to figure 4 is obtained.
- 14. click on "Status", verify that a popup screen similar to figure 5 is obtained and that the entry shown for ---DDS-A--- under /FREQ displays the expected factory-configured frequency.

The unit is now operating and transmitting the required signal.

5.2. Toggling between signal types

Two signal types are allowed: standard frequency-modulated continuous wave chirp for normal radar operation, and continuous tones for calibration. Continuous tones can be programmed at three distinct frequencies: at the lower limit of the allocated bandwidth *f0-bw/2*, at the center frequency *f0* and at the upper limit of the allocated bandwidth *f0+bw/2*.

To toggle between signal types:

- 1. open a browser on the unit's IP address, obtain a screen similar to figure 4.
- 2. to change between signal types, click on the appropriate button.
- 3. wait 15 sec for the command to execute.
- 4. verify with the "Status" screen that the frequency has been updated.

The unit is now transmitting the required signal.

5.3. Power-down procedure

The following steps must be performed in the order given:

- 1. open a browser on the unit's IP address, obtain a screen similar to figure 4.
- 2. click on the "Stop" button.
- 3. wait 15 sec for the command to execute.
- 4. verify with the "Status" screen that the frequency has been updated to 0.
- 5. open enclosure.
- 6. disable the power supplies by flipping all breakers in sequence from left to right to the down position (middle DIN rails, figure 9).
- 7. power down the unit and the heat exchanger.
- 8. close enclosure and stow unit.

<u>File Edit View History B</u>	ookmarks <u>T</u> ools <u>H</u> elp					- 🛚 😣
192.168.1.20/select_frequen×	+					
\leftarrow \rightarrow C \textcircled{a}	🗘 🏠 192.168.1.20/select_frequer	ncy.html				☆ ♡ ≡
D-tAcq Solutions						
Region 2:						
Region 2: Frequency	Bandwidth	Chirp rate	Chirp	Tone	Tone	Tone
Region 2: Frequency MHz	Bandwidth kHz	Hz	f0	fO	f0	fO
Region 2: Frequency MHz f0	Bandwidth kHz bw		f0 ±bw/2	f0 -bw/2	f0 0	f0 +bw/2
Region 2: Frequency MHz f0 4.4630	Bandwidth kHz bw 50	Hz r 1	f0 ±bw/2	f0 -bw/2 0	f0 0 0	f0 +bw/2 0
Region 2: Frequency MHz f0	Bandwidth kHz bw	Hz	f0 ±bw/2	f0 -bw/2	f0 0	f0 +bw/2 0
Region 2: Frequency MHz f0 4.4630	Bandwidth kHz bw 50	Hz r 1	f0 ±bw/2 0	f0 -bw/2 0	f0 0 0	f0 +bw/2 0
Region 2: Frequency <i>MHz</i> <i>f</i> 0 4.4630 5.2625	Bandwidth kHz bw 50 25	Hz r 1 1	f0 ±bw/2 0 0	f0 -bw/2 0 0	f0 0 0 0	f0 +bw/2 0 0
Region 2: Frequency MHz f0 4.4630 5.2625 13.500	Bandwidth kHz bw 50 25 100	Hz r 1 1 3	f0 ±bw/2 0	f0 -bw/2 0	f0 0 0	f0 +bw/2 0

Figure 4. Web interface for programming the synthesizer/transmitter.

\rightarrow C \textcircled{a}	0 8	192.168.1.	20/d-tacq/#DI	DS				120%	☆	⊘
Home System	Firmware	FPG.	A Temp	perature	Power	Тор	Interrupts			
acq400.0 acq4	400.2 GP	SNTP	PPSCLK	CLKD	DDS	COUN	TERS			
* DDS		- DDS A		DDS B			- DDS C			
+ FIN		25.17E+6								
* INTCLK		302.0E+6		302.0			302.0E+6			
/ FREQ		4.463E+6			000		25.17E+6			
0 POTW1		0000		6	000		0000			
1 POTW2		0000		6	000		0000			
2 FTW1	0.014700 0	3c361000000	0.000	000 00000000	000	0.083886 1	5798ee2308c			
3 FTW2	0.000000 0	00000000000	0.000	000 000000000	000	0.000000	00000000000			
4 DFR	6	0000000125		000000000	000	6	000000000000			
5 UCR		09000000		00000	000		00000000			
6 RRCR		000001		000	000		000000			
7 CR	X12	004c8761		X12 004c0	041	X12	004c0041			
8 IPDMR		Offf		6	000		0000			
9 QPDMR		Offf		6	000		0000			
a SKRR		00			00		00			
b QDACR		0000		6	000		0000			

Figure 5. Diagnostic page with DDS registers read-back.

6. Antenna design

The transmit antennas are normal-mode helical monopoles (Kraus, J.D., "The Helical Antenna", *Proc. I.R.E.* 1949 pp. 263-272). They consist of an AWG-16 vertical wire of length $\lambda/4$ wound over a mast of height $\lambda/8$ and diameter $\lambda/300$, a 3-loop tuning air-coil, and a network of 4 underground radials of length $\lambda/4$ (λ is the electromagnetic wavelength). The air-coil diameter is adjusted to achieve resonance using a standard commercial VSWR meter.

The customer-provided mast may be built of any non-conductive material, such as fiberglass, PVC, bamboo, wood. The typical gain of a normal-mode helical monopole is approximately 2 dBi.

Figure 6. Normal-mode helical monopole with air-coil on a fiberglass mast (8 MHz).

Figure 7. Normal-mode helical monopole with air-coil on a PVC mast (16 MHz).

F	Wavelength	Vertical wire	Radial wires	Pole height	Diameter
(MHz)	(m)	(m)	(m)	(m)	(cm)
4.4630	67.22	16.80	16.80	8.40	22.4
5.2625	56.01	14.00	14.00	7.00	18.7
13.500	22.22	5.55	5.55	2.78	7.4
16.150	18.58	4.64	4.64	2.32	6.2
24.550	12.22	3.05	3.05	1.53	4.1
26.310	11.40	2.85	2.85	1.43	3.8

Table 5. Dimensions of the antenna components as function of ITU frequency (metric)

The coaxial cable connecting the synthesizer/transmitter unit in the shack to the remote antenna, preferably deployed at the water edge, is specified as standard RG-213U, with a typical attenuation of at least 5 dB, depending on the frequency.

To comply with FCC RF exposure requirements, the antennas must be installed to ensure a minimum separation distance from persons while operating:

Table 6. Minimum separation distance to comply with FCC RF exposure requirements

Operating Frequency	Minimum Separation Distance
(MHz)	(m)
4.463	10.66
5.2625	10.66
13.500	3.55
16.150	3.55
24.550	2.30
26.310	2.30

7. Photos of unit

Figure 8. Above: Synthesizer-Transmitter Unit model MK3-PW-PA-TX, serial 3-003 (March 2022), door closed. Below: device identification label, affixed to the top right of the enclosure door. The factory-programmed operating frequency and output power are marked, here 16.150 MHz/30W.

	University of Hawai'i at Mānoa Radio Oceanography Laboratory 1000 Pope road Honolulu Hawai'i 96822					
Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit						
Model: MK3-PW-PA-TX Serial number: 3-003 Input voltage: 85-260 V Input power: 250 W AC FCC ID: 2A562-MK3-PW-PA-TX Modulation: FMCW mode F1N Operating frequency / Bandwidth / RF power:						
 4.4630 MHz / 50 kHz / 50 13.500 MHz / 100 kHz / 24.550 MHz / 200 kHz / 	/ 30 W ■ 16.150 MHz / 100 kHz / 30 W					

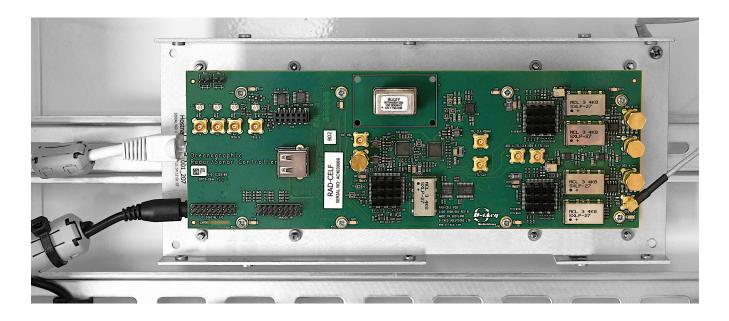



Figure 9. Synthesizer-Transmitter Unit, door open. Bottom rails: power supplies with circuit breakers. Upper rail: digital synthesizer and controller with blue thermal bell. On the right wall: the power amplifier module and the low-pass filter.

Figure 10. Synthesizer-Transmitter Unit, door open, slanted view. The power amplifier module (top) and the low-pass filter (bottom) are seen on the right inner wall.

Figure 11. Upper rail enlarged from Figure 9 and 10, after removal of the aluminum lid and thermal bell, showing the Triple DDS Radar Controller board.

Figure 12. Carrier board with FPGA, after removal of the Triple DDS Radar Controller board (top face; bottom face not accessible).

Figure 13. Synthesizer-Transmitter Unit, left and right side views. The twin-fan forced air flow heat exchanger unit is seen on the right side.

Figure 14. Synthesizer-Transmitter Unit, bottom view. Connector plate with IEC-C13/C14 power inlet, RJ45 jack for CAT6 Ethernet, N-type bulkhead adapter for cable to antenna (a Bird 100-SA-FFN-30 power attenuator is attached).

Fig. 14. Synthesizer-Transmitter Unit, top view. The twin-fan forced air flow heat exchanger unit is seen on the right side.

Fig. 15. Synthesizer-Transmitter Unit, back view (after removing unit from wall supports).

Appendix 1 : specifications of the ultra-low phase noise oscillator (OCXO)

High Freq. 20x13mm NV79 DIP OCXO

Bliley Technologies Inc. 2545 W Grandview Blvd Erie, Pa 16506 Factory +1-814-838-3571

Features:

- 50MHz to 120MHz Output Frequency's
- Standard Frequency of 100 MHz.
- Excellent Stability and Noise in a miniature size
- Options for Phase noise, and FVT
- Available in surface mount, through hole or gull wing package styles.
- RoHS-6/Lead free Compliant
- Storage Temperature Range of -55°C to +85°C
- Manufactured in Erie, Pa. USA

Description:

The NV79 Series Ovenized Crystal Oscillator offers high stability Frequency vs. Temperature performance and SC Cut Crystal Phase Noise performance in a DIP configuration. It is ideally suited for base station, test equipment, synthesizers, and digital switching applications. It is available in three different package styles as well as custom frequencies between 50 to 120 Mhz. Standard frequency is 100 MHz.

Electrical Specifications

1. Output Characteristics

	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
1.1	Frequency Range	50		120	MHZ	
1.2	Initial Accuracy			±50	РРВ	
1.3	Output Type					
	Sinusoidal					
	Output Level	3	5		dBm	
	Load Impedance ±5%	45	50	55	Ω	
	Harmonic Content		-25		dBc	
	Spurious Modulation			-60	dBc	
1.4	Acceleration Sensitivity*			1	PPB/g	@100MHz

*Please consult factory for acceleration sensitivity options regarding other frequencies.

High Freq. 20x13mm NV79 DIP OCXO

2. Frequency Stability

	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
2.1	Frequency vs. Temperature					Referenced to Frequency @+25°C
	0°C to +50°C		±70		PPB	See Table 2 For Ordering Options
	-20°C to +70°C		±100		PPB	See Table 2 For Ordering Options
	-40°C to +85°C		±150		PPB	See Table 2 For Ordering Options
2.2	Aging		Typical f	or 100MH	z after 30 d	ays of continuous operation
	Per day after 30 days			±5	PPB	
	1 st Year**			±300	PPB	Typical at 100MHz after 30 days of continuous operation
	10 Years**			±650	PPB	
2.5	Short Term		8		10e-11	$\tau = 1$ Second
2.6	Warm-up		±50		PPB	Within 3 minutes
			_	See Tal	ble 2 for Or	dering Options
2.7	Static Phase Noise	Option A	Option B	Option C		
	£ (f)@10Hz	-95	-90	-85	dBc/Hz	
	⊥ (f)@100Hz	-127	-120	-115	dBc/Hz	Tested @ +25°C±1°C
	 <i>L</i> (f)@1KHz	-148	-145	-140	dBc/Hz	Static Environment
	£ (f)@10KHz	-158	-155	-150	dBc/Hz	
	<i>L</i> (f)@100KHz	-160	-155	-150	dBc/Hz	

Values listed above are typical performance of a (100.000) MHz Fo

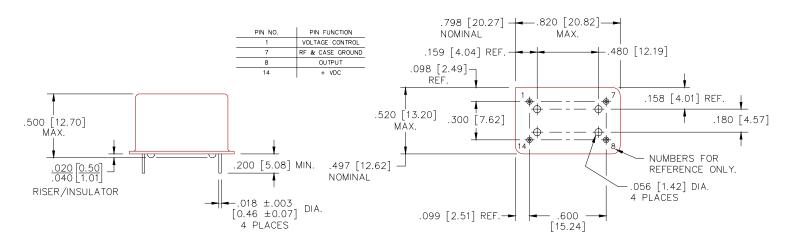
**Long term aging projection is calculated per MIL-PRF 55310 f(t) = A(ln(Bt+1))+Fo

3. Input Characteristics

	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
3.1	Supply Voltage	4.75	5	5.25	Vdc	See Table 2 for Ordering Options
3.2	Power Dissipation					
	Warm-up			800	mA	@25°C ±1°C ambient
	Steady State			300	mA	@25°C ±1°C ambient

High Freq. 20x13mm NV79 DIP OCXO

3. Input Characteristics (Continued)


	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
3.3	Electronic Frequency Control					
	Voltage Range	0		5.0	Vdc	
	Center Voltage		2.5		Vdc	
	Frequency Range	±0.8			PPM	Consult Factory for Wide Pull Range
3.4	Slope		Positive			
3.5	Input Impedance	100K			Ω	
3.6	Linearity			10	%	

4. Environmental, Reliability and Mechanical Specifications

	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
4.1	Operational Temperature	-40		+85	°C	See Table 2 For Ordering Options
4.2	Storage Temperature	-55		+85	°C	
4.3	Shock Mil-Std 202G		Su	rvive		1000 Single, 100 Repeated
4.4	Sinusoidal Vibration Mil-Std 202G		Survive			50G's rms 10 to 2000Hz

Mechanical Dimensions, and Pin Functions

Standard Package Style (79A):

Appendix 2 : specifications of the digital synthesizer (DDS) module

RADCELF Product Specification

D-TACQ Solutions Ltd

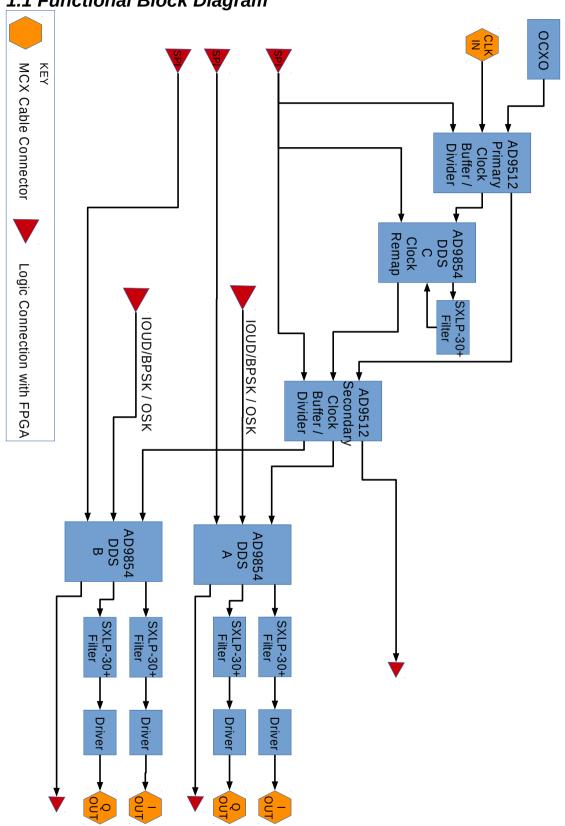
RADCELF

TRIPLE-DDS RADAR SIGNAL GENERATOR Product Specification

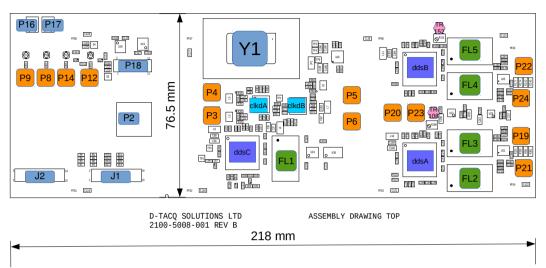
High Performance Simultaneous Data Acquisition

Table of Contents

1	Product Description	.3
	1.1 Functional Block Diagram	.4
2	Physical	.5
	2.1 Devices	
	2.2 MCX Connectors	.5
	2.2.1 Misc Connectors	.6
	2.3 RADCELF Dimensions	.6
	2.3.1 Length 218mm	.6
	2.3.2 Width 76.5mm	.6
	2.3.3 Stack Height 50mm	.6
	2.4 Appearance	.7
	2.4.1 Plan View	.7
	2.4.2 Side view of Stack up	.7
3	Interface Specification	.8
	3.1 OCXO socket	.8
	3.2 I/O Connectors	.8
	3.2.1 I& Q Output MCX Connectors	.8
	3.2.2 Clock Input	.8
	3.2.3 Trigger Inputs	.8
	3.3 Clock Monitors	.8
	3.4 Misc Connectors	.8
	3.4.1 P16 3V3 External	.8
	3.4.2 P17 5V External	.8
	3.4.3 P18 PMOD Header	.9
	3.4.4 J1 AI 8 Slow monitor	.9
	3.4.5 J2 DIO control	.9


1 Product Description

- 1. RADCELF is a complete clocking system suitable for HF RADAR and SONAR
- 2. Circuit board forms the top layer of a 3-layer stack comprising
 - 1. ACQ1001Q base unit with ZYNQ FPGA
 - 2. Optional digitizer module.
 - 3. RADCELF
- 3. Includes 3 x AD9854 DDS devices
 - 1. ddsA : I+Q outputs, for main system control.
 - 2. ddsB : I+Q outputs for system calibration.
 - 3. ddsC : I output for clock remapping
- 4. Includes 2 x AD9512 CLKD Clock divider/buffer devices
 - 1. clkdA : Select Oven Local Oscillator or CLK-IN
 - 2. clkdB : Select Clock source for ddsA, ddsB.
- 5. All 5 devices are controlled from SPI from the ACQ1001. Multiple SPI channels are used to potentially provide simultaneous register update.
- 6. Key signal inputs to DDS are provided from the FPGA. All output clocks feed back to the FPGA for monitoring.
- 7. Provision for Oven Local Oscillator (power supply, socket and space for thermal management) or external clock
- 8. Signal inputs and outputs on MCX connectors. ddsA, ddsB TRG inputs.
- 9. Outputs filtered by Minicircuits SXLP filters.
- 10. I/O expansion:
 - 1. P18: PMOD connector. (12 pin header with FPGA IO)
 - 2. J1: VMON (16 pin header, 8 x slow ADC channels, 1Hz, 10bit)
 - 3. J2: DIO (16 pin header, 8 slow DIO)
 - 4. USB 2.0, type A port, suitable for USB stick or remote devices.


RADCELF?

RAD : Radar

CELF : "Carrier Elf", D-TACQ definition for 3 layer stacking board.

2 Physical

2.1 Devices

- ddsA, ddsB, ddsC : AD9854 DDS devices
- clkdA, clkdB: AD9512 CLK divider/distributors.
- FL1..FL5 DDS output filters
- Y1 DIL socket for LO
- TR152, TR108 : DDS output level match trimpots.

2.2 MCX Connectors

ID	10	Description	Opt?
P3	I	EXT CLK INPUT	
P4	0	OCXO LO Monitor	
P5	0	REMAP CLK Monitor	Х
P6	0	clkdB Monitor	Х
P8	10	Link tee with uFL P10	Х
P9	10	Link tee with uFL P11	Х
P12	10	DDS A Trigger tee with uFL P13	
P14	10	DDS B Trigger tee with uFL P15	
P19	0	DDS A I output	
P20	0	DDS A monitor output	Х
P21	0	DDS A Q output	
P22	0	DDS B I output	
P23	0	DDS B monitor output	Х

D-TACQ Solutions Ltd

ID	10	Description	Opt?
P24	0	DDS B Q output	

2.2.1 Misc Connectors

ID	Туре	Description	Opt?
P2	USB-A	USB 2.0 Master	
P16	2-pin HDR	3V3 external	Х
P17	2-pin HDR	5V external	Х
P18	12 pin HDR	PMOD Header	
J1	16 pin HDR	AI 8 slow monitor	
J2	16 pin HDR	DIO 8 slow control/monitor	

2.3 RADCELF Dimensions

2.3.1 Length 218mm

2.3.2 Width 76.5mm

2.3.3 Stack Height 50mm

D-TACQ Solutions Ltd

2.4 Appearance

2.4.1 Plan View

2.4.2 Side view of Stack up

Top to Bottom:

- RADCELF
- ACQ1001: FPGA/Computer control module.
- Plinth base.

3 Interface Specification

3.1 OCXO socket

Standard 14 pin socket is provided for a OCXO.

Linear regulated 5V power at up to 1A (warm up) and 500 mA (steady state)

Sine or Square Wave output 2-7 dBm

Tested with Bliley NV79A.

Physical separation with mounting holes to allow the OCXO to be encased for thermal separation

3.2 I/O Connectors

3.2.1 I& Q Output MCX Connectors

All outputs are a nominal 7dBm output with 50 Ohm impedance

3.2.2 Clock Input

Connector P3 transformer coupled 2-7dBm 50 Ohm input Square or Sine Wave input.

3.2.3 Trigger Inputs

The two trigger input functionality is application dependent. These are 5V TTL compatible inputs with optional output functionality.

3.3 Clock Monitors

P4 allows the oscillator to be monitored it is a direct connection to the output of the OCXO Oscillator

P5 is a TTL output monitor of the square wave frequency of the Clock Remapping DDS – DDS C. This is the square-wave produced by the AD9654 comparator.

P6 is a TTL output monitor of the input Clock to the two main DDS devices DDS A and DDS B. This signal is controlled from the secondary AD9512 device and can therefore be overridden under software control to produce a divide by N output if desired.

P20 and P23 are TTL monitors of the square wave frequency of DDS A and DDS B. This is the square-wave produced by the AD9654 comparator.

3.4 Misc Connectors

3.4.1 P16 3V3 External

Auxiliary 3V3 output 100 mA max.

3.4.2 P17 5V External

Auxiliary 5V output 100 mA max.

3.4.3 P18 PMOD Header

12 pin 0.1" box header socket for use with PMOD modules.

PMOD is a simple low-cost expansion standard.

Using the PMOD requires FPGA customization depending on PMOD chosen. Please contact D-TACQ with requirements.

3.4.4 J1 AI 8 Slow monitor

16 pin 0.1" box header plug for monitoring slow AI signals.

Input range: 0..5V, 10 bit conversion, 1Hz typical rate. 20K input impedance.

Access through Linux device driver.

	1
Pin	Channe l
2	AI1
4	AI2
6	AI3
8	AI4
10	AI5
12	AI6
14	AI7
16	AI8
1,3,5,15	GND

2x LM7417 devices include temperature monitor.

3.4.5 J2 DIO control

16 pin 0.1" box header plug for slow DIO control.

5V TTL. Access through Linux device driver.

Pin	Channe l
2	DI01
4	DI02
6	DI03
8	DIO4
10	D105
12	DI06
14	DI07
16	DI08
1,3,5,15	GND


Appendix 3 : specifications of the power amplifier (PA) module

RF Amplifier Module Data Sheet

BTM00250-AlphaSA 500kHz-150MHz 250W Pulsed/50W CW

Scientific and Industrial Applications

The BTM-AlphaSA series is a range of class AB RF power amplifier modules covering the 500kHz to 150MHz frequency range.

- Rugged, solid-state design high reliability
- Extremely high phase and amplitude stability
- Very fast pulse rise/fall times
- High linearity
- Very low interpulse noise
- Competitively priced

Can be supplied as amplifier module only or with optional heatsink and cooling fans

RF Specifications

Rated Power	250W minimum in pulsed mode 50W minimum in CW mode PEP for input power of 0dBm
P1dB	200W minimum in pulsed mode 40W minimum in CW mode Minimum output power at P1dB compression
Gain	54dB minimum in pulsed mode 47dB minimum in CW mode
Туре	Class AB MOSFET
Frequency	500kHz-150MHz
Gain flatness	±2dB maximum (measured at 1/10th rated output power)
Max. duty cycle	20% Maximum GATE duty cycle in pulsed mode
Max. pulse width	100ms Maximum GATE pulse width in pulsed mode
Pulse droop	0.5dB maximum Measured at max. pulse width at P1dB level
Pulse rise and fall times	Risetime: 200ns typical Falltime: 100ns typical using a pre-gated RF input signal
Gate rise and fall times	Risetime: 300ns typical Falltime: 150ns typical
Gate delay	Rising edge: 1µs typical Falling edge: 500ns typical Rising edge measured from rising edge of GATE pulse to 90% RF output voltage. Falling edge measured from falling edge of GATE pulse to 10% RF output voltage
Harmonics	Odd: -20dBc typical, -10dBc max. Even: -30dBc typical, -20dBc max. Measured at 1dB below rated output power
Spurious	<-70dBc maximum
Output noise (blanked)	<10dB above thermal (100kHz bandwidth)
Phase change/power	<10° from -40dB to full power
Phase stability	<1° across 100ms pulse
Input/output impedance	50 Ω nominal
Load VSWR	Tolerates at least 3:1 @ full rated power without damage External mismatch protection is recommended No internal mismatch protection included
Gain control range	10dB minimum for 0-5V control voltage Control via parallel interface
RF Input	0dBm nominal, +10dBm for no damage
GATE (blanking)	Logic low = Blank, logic high = unblank. CMOS and TTL compatib

Electrical Specifications

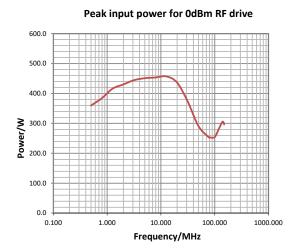
DC supply voltage	Pulsed mode: +50V at approx. 3.3A CW mode: +28V at approx. 8A
DC connection	Solder pin

RF Amplifier Data Sheet

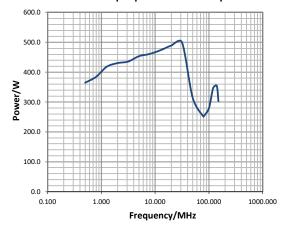
2nc 3rd 4th

5th

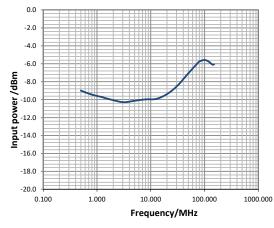
1000.000

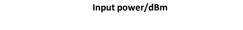

100.000

0.5MHz 5MHz


50MHz

150MHz


Typical Performance Plots



Peak output power at 1dB compression

RF input for 50W CW out at +28V DC

-2.0

0.0

2.0

-4.0

Harmonics

10.000

Frequency/MHz

Gain as a function of input power

0.0

-10.0

-20.0

-30.0

-40.0 -50.0

-60.0

-70.0

-80.0

60.0

59.0

58.0 57.0

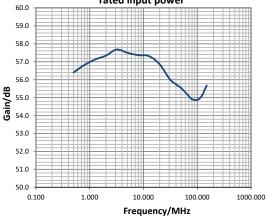
56.0

53.0 52.0

51.0

50.0

-6.0

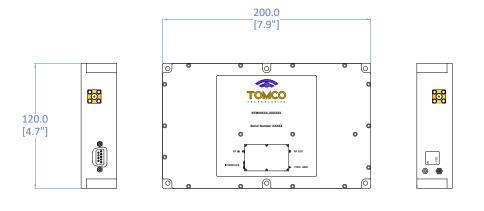

gp/ug 55.0 54.0

0.100

1.000

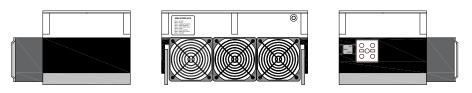
Harmonic level/dBc

Small signal gain measured at 10% of maximum rated input power



RF Amplifier Data Sheet

Mechanical Specifications


Connectors	RF IN: SMA RF OUT: SMA INTERFACE: DB9 female
Dimensions	Module only: 200mm (7.9") x 120mm (4.7") x 37mm (1.5") Module with heatsink: 200mm (7.9") x 120mm (4.7") x 85mm (3.3") Module with heatsink and fan assembly: 200mm (7.9") x 168mm (6.6") x 85mm (3.3")
Weight	approx. 1.3kg (2.8lbs), module only
Enclosure classification	IP20

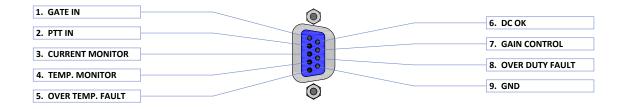
DB9 INTERFACE PL 2016 PL 201		37.0 [1.5"]
--	--	----------------

E STATE ACT P A STATE P A STATE	0	

With optional heatsink

With optional heatsink and fan assembly

RF Amplifier Data Sheet



Protection

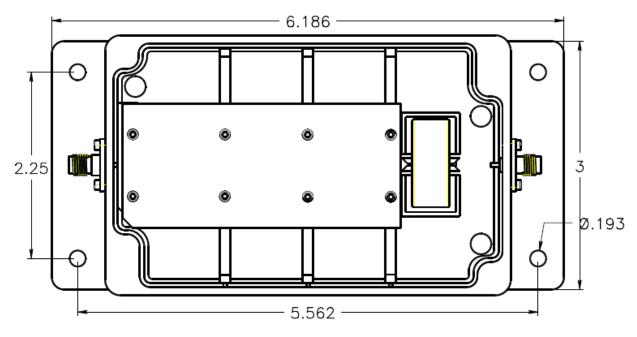
Over temperature	Self-resetting shutdown protection activates if thermal limits are exceeded
Reverse polarity	Reverse-current protection circuitry
Input/output transients	High voltage transient protection circuitry

Monitoring and Control

Parallel Interface 9-pin D-connector female			Parallel Interface	9-pin D-connector female
---	--	--	--------------------	--------------------------

Environmental

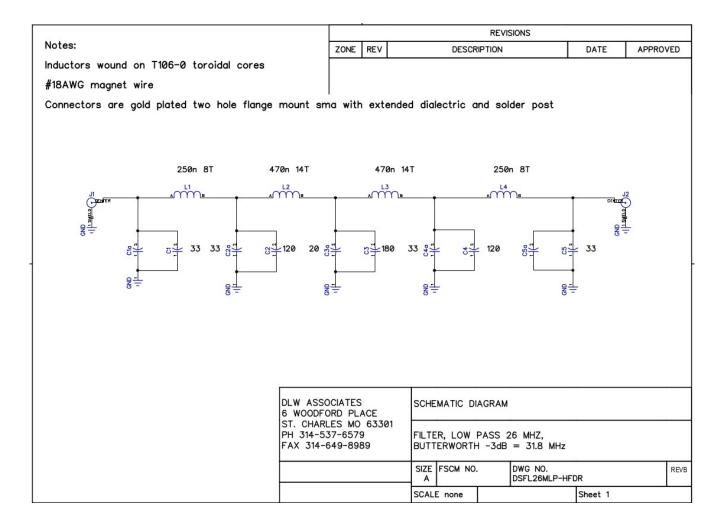
General	Intended for use only in controlled, indoor environment. Non-consumer product for industrial and scientific use
Cooling	Requires heatsink and/or external fan (optional extras)
Operating temperature	+5°C to +40°C
Storage temperature	-20°C to +60°C
Humidity	80% for temperature up to 31°C, decreasing linearly to 50% relative humidity at 40°C
Operating altitude	Up to 2000m
Pollution degree	2
Electromagnetic compatibility	In line with IEC61326-1:2012 ISM sub-assembly, Group 1, Class A
Safety	In line with IEC61010-1:2010
Electromagnetic field strength	In line with ICNIRP Guidelines: 1998, occupational limits

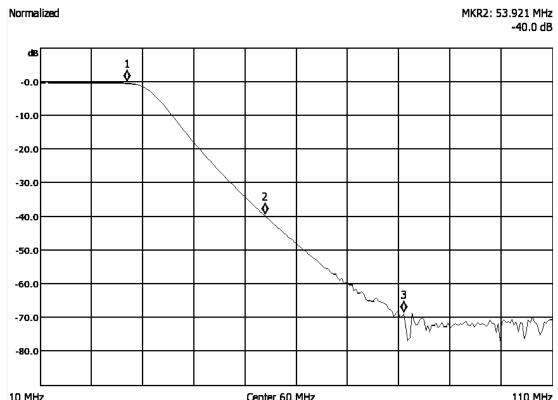

Appendix 4 : specifications of the low-pass filter (LPF) module

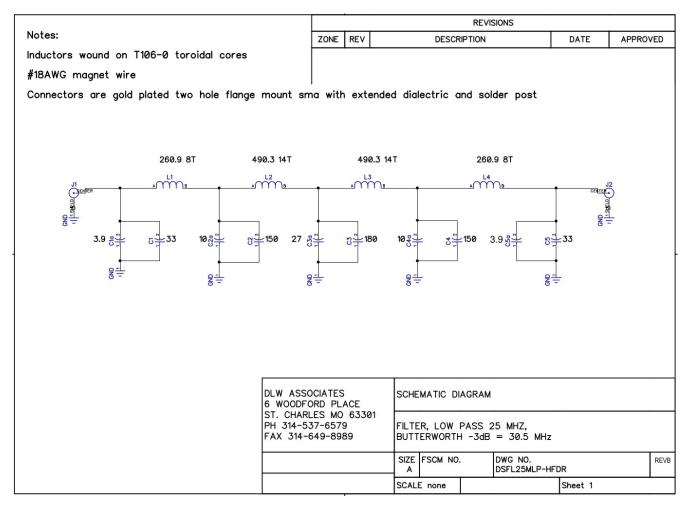
March 29, 2022

BASIC COMMON SPECIFICATIONS:

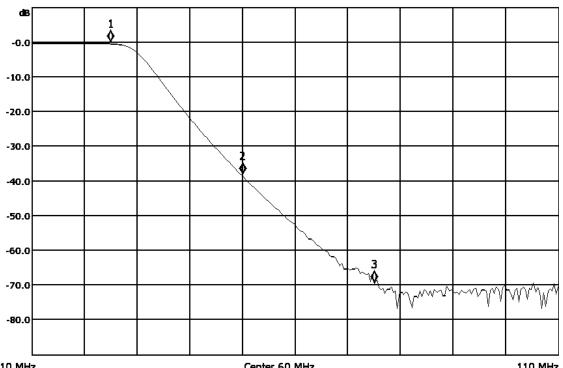

- Maximally Flat (Butterworth) 9th Order Response
- Return Loss 20 dB min over Passband
- Power Rating: 100W max Continuous
- Connectors: SMA, Gold Plated
- Mounting Bracket
- Impedance 50 Ohms
- Cast Aluminum NEMA 4 Rated Enclosure & Gasketed Cover
- Alodine Conversion Coat
- Coils Sealed with Q-Dope
- 18-8 Stainless Assembly Hardware
- Weight: 1.6 lbs

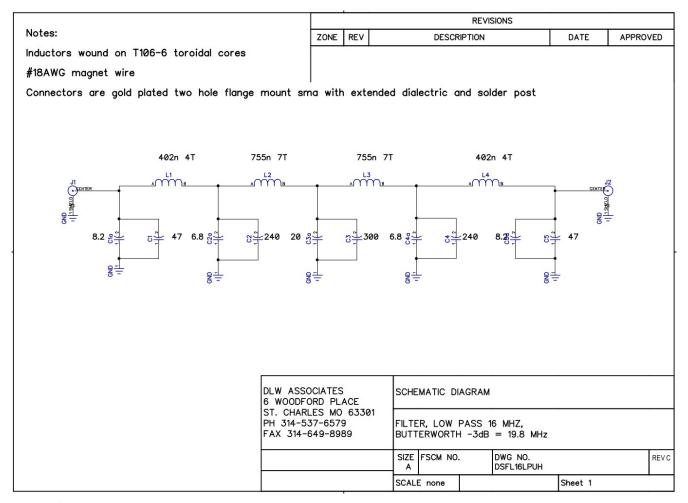

Part No	Insertion Loss dB	B F-3dB (MHz) F-60dB(MHZ) F-100dB		F-100dB ()MHz)
FL5MLP-HFDR	0.25	6.4	13.8	23
FL9MLP-HFDR	0.29	11.25	24.25	40.6
FL13MLP-HFDR	0.3	16.25	35	58.7
FL16MLP-HFDR	0.3	19.7	42.5	71.3
FL25MLP-HFDR	0.3	30.5	65.7	110
FL26MLP-HFDR	0.53	31.7	67.8	114.5



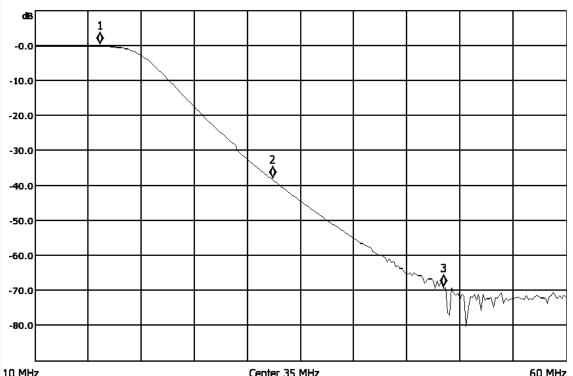


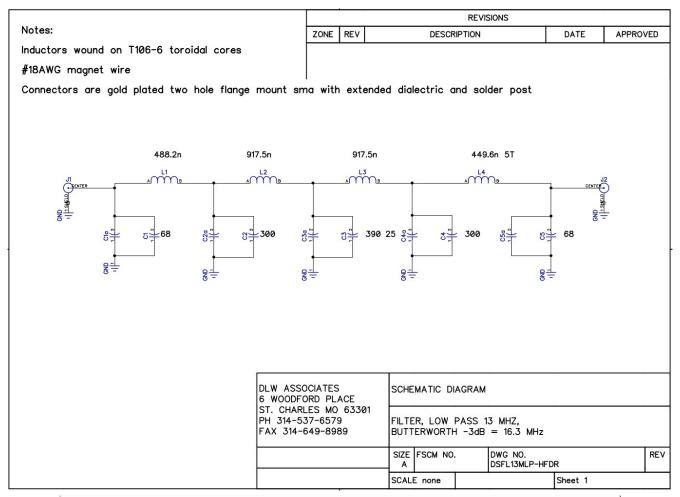
DLW ASSOCIATES 6 Woodford place St. Charles, MO 63301 USA PH: 314-537-6579 FX: 314-649-8989

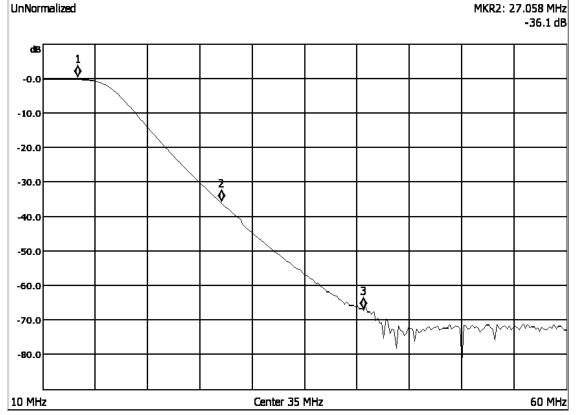


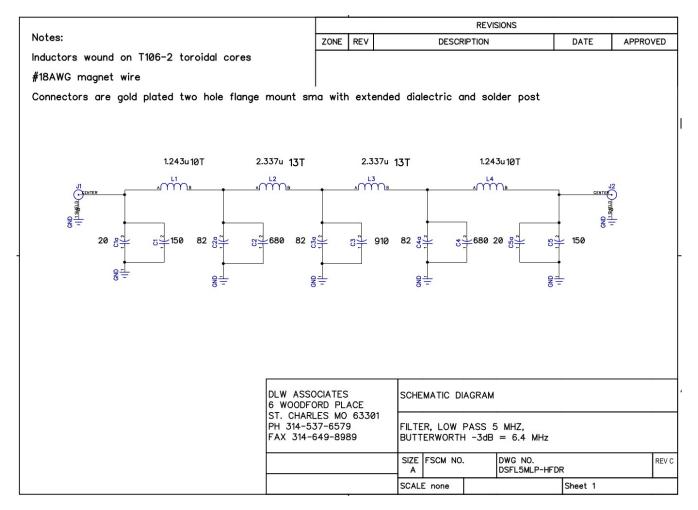


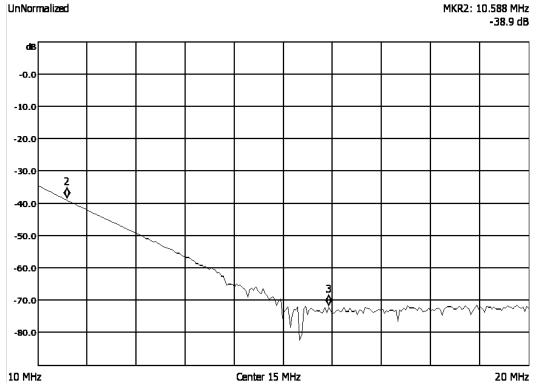
Normalized


MKR2: 50 MHz -38.6 dB






UnNormalized


MKR2: 32.352 MHz -38.3 dB

Appendix 5 : specifications of the power supply (PS) module

Industrial Power Supplies

TSP-Series

Innovative and Powerful Features!

- Rugged metal case for harsh industrial environments
- Shock and vibration proof
- Worlwide Safety approval package.
- ATEX certification tested in accordance to IECEX (opt. EX)
- Model TSP 090-124N meets NEC class 2
- Industrial operating temperature range: -25°C to +70°C
- Adjustable output voltage
- Protection against short-circuit, overvoltage and over-temperature
- Power OK signal, Remote On/Off
- Wall mounting (opt.)
- 3-year product warranty

Function Modules (see page 5)

The TSP series comprises high performance DIN-rail mount power supplies designed for reliable operation under difficult factory floor conditions. High immunity against electrical disturbances and rugged metal casing make these modules the best choice to power sensitive loads in industrial process control systems, machine tools or other demanding industrial applications. They provide a DC-OK signal and external shut down function. Detachable screw terminal blocks make the connection easy.

This power supply line is accompanied by a wide range of function modules for reliable system solutions:

Redundancy modules for true current sharing in parallel operation and for redundant systems.

Battery controller modules to configure high reliable UPS systems for 12, 24 and 48 VDC. Selection of battery packs available.

Buffer modules for protection against short time AC power loss. Maintenance free! No batteries required.

Models			
Order Code	Output Power	**Output Voltage	***Output Current
	(Pmax)	(Vnom)	(Imax)
TSP 070-112*	72 W	12 VDC	6.0 A
TSP 090-124*	90 W	24 VDC	3.75 A
TSP 090-124N	90 W	24 VDC	3.75 A
TSP 090-148*	96 W	48 VDC	2.0 A
TSP 140-112*	144 W	12 VDC	12.0 A
TSP 180-124*	180 W	24 VDC	7.5 A
TSP 180-148*	192 W	48 VDC	4.0 A
TSP 360-124*		24 VDC	15.0 A
TSP 360-148*	360 W	48 VDC	7.5 A
TSP 600-124*		24 VDC	25.0 A
TSP 600-136	600 W	36 VDC	16.5 A
TSP 600-148*		48 VDC	12.5 A

* For ATEX compliant models add appendix -EX to order code.

** Output voltage adjustable 12–14 VDC, 24–28 VDC and 48–56VDC

*** Max. current at nominal output voltage and operating temperature up to +40°C max.

TRACO[®] POWER

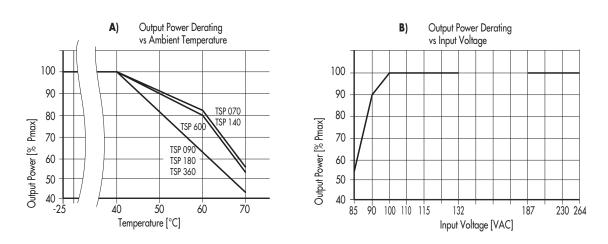
~

Industrial Power Supplies TSP Series 70-600 Watt

Input Specifications	i de la companya de l				
Input voltage range			85 – 264 VAC universal input		
output current derating at			85 – 132 / 187 – 264 VAC autoselect see graph B, page 4		
Input voltage frequency		erditori below TOO VAC	47 – 63 Hz		
Harmonic limits			EN 61000-3-2, Class A (for limited output power)		
Holdup time		230 VAC	20 ms		
Inrush current			115 VAC 230 VAC		
		TSP 070/090	< 12 A < 20 A		
		TSP 140/180	< 13 A < 25 A		
		TSP 360 TSP 600	< 16 A < 25 A < 25 A < 30 A		
Recommended circuit brea		SP 070/090/140/180	6.0 – 16.0 A		
characteristic B		TSP 360			
		TSP 600	16.0 – 25.0 A		
Efficiency			87 % typ.		
Output Specificatio	ns				
Output voltage adj. range		12 VDC models:	12 - 14 VDC		
		24 VDC models:			
		36 VDC model:			
		48 VDC models:	48 – 56 VDC At output voltage higher than nominal output voltage		
			max. output current has to be reduced accordingly, in		
			order not to exceed max. output power.		
Regulation	- Input variation		0.5 % max.		
	- Load variation (10–10)0 %)	0.5 % max.		
Ripple and Noise (20MHz bandwidth)		100 mV pk-pk typ. (200 mV pk-pk max. at Imax)			
Electronic short circuit protection		current limitation at Imax. constant current, automatic recovery			
Output overvoltage protection		12 VDC models:	20 V		
e ciper e ci cinage pi cier		24 VDC models:			
		36 VDC model:			
		48 VDC models:			
Overload protection			electronic overload protection		
Overtemperature protection	on		switch off at overtemperature, automatic restart		
Power back immunity		12 VDC models: 24 VDC models:	16 V 35 V		
		36 VDC model:	48 V		
		48 VDC models:	63 V		
Status indicator			dual color LED (green: DC ok, red: DC off)		
Power OK signal	– trigger threshold:	12 VDC models:	9 – 11 V		
		36 VDC model: 48 VDC models:	27 – 34 V 36 – 46 V		
	– active output signal:	12 VDC models:	11.0 V ±1.0 V		
	(reference to -Vout)		(20 mA max. for TSP 070, 40 mA max. for TSP 140		
		24 VDC models:	22.0 V ±2.0V / 20 mA max.		
			(10 mA max. for TSP 090, 20mA max. for others)		
		36 VDC model: 48 VDC models:	34.0 V ±2.0 V / 20 mA max. 44.0 V ±4.0 V / 15 mA max.		
	– relay output	.5 72 6 1100005.	DC OK = contact closed		
			rated: 30 VDC/1.0 A for 12/24 VDC models		
			rated: 30 VDC/2.0 A for 36 VDC model		
			rated: 48 VDC/0.5 A for 48 VDC models		

TRACO[®] POWER

Industrial Power Supplies TSP Series 70-600 Watt


General Specificati	ons				
Max. capacitive load		unlimited			
Temperature range	– Operating	-25°C to +60°C max. (with derating)			
		(for derating see graph A on page 4)			
	– Storage	-25°C to +85°C			
Cooling		convection cooling, no	internal fan		
Humidity (non condensing)		95 % rel. H max.			
Pollution degree		2			
Altitude during operation		2′000 m max.			
Temperature coefficient		0.02 %/K			
Reliability, calculated MTB	F (at +25°C acc. to IEC 61709) - TSP 070/090 - TSP 140 - TSP 180/360/600	>1.2 Mio h			
Remote On/Off		by ext. contact. DC on: -S contact ope DC off: -S connected		ut	
Isolation (60 s)	– Input to output – Input to PE – Output to PE	3'000 VAC 1'500 VAC 500 VAC			
Safety standards	 Information technology equipment Measurement, Control & Laboratory Industrial control equipment Electrical equipment for machines Electronic equipment for power installation Safety transformers for SMPS Limited power source (model TSP 090-124N) Control equipment for hazardous location 	IEC/EN 60950-1, UL 60950-1, CSA-C22.2 No. 60950-1 IEC/EN 61010-1, IEC/EN 61010-2-201 UL 508, CSA-C22.2 No. 107 EN 60204 EN 50178 EN 61558-2-16) EN 60950 sect. 2.5 and NEC Class 2 UL 60079-15 (Class I, Division 2, Groups A,B,C,D AEx n C II C T4 IEC/EN 60079-15 (Class I, Zone 2, EEx n C II C T4 U (I C M 60079-15 (Class I, Zone 2, EEx n C II C T4 U (I C M 60079-15 (Class I, Zone 2, EEx n C II C T4 U			
Safety approvals and certifications	 CB report UL approvals CSA certification II3G ATEX 94/9/EC BG certification Certification documents 	for IEC/EN 60950-1, IEC/EN 61010-1 & 61010-2-2 UL 60950-1 rec. File: e181381, UL 508 listed File: e2100 (file no. 219759) for UL 60950-1, UL 508, UL 60079-1 ANSI/ISA 12.12.01, CSA-22.2 No. 60950-1-03, CSA C22.2 No. 107, CSA 60079-15-02 certificate no. EPS 12 ATEX 1 424 X (option -EX of EN 60950-1, EN 60204-1, EN 61558-2-16, EN 50 www.tracopower.com/overview/tsp		ed File: e210002 UL 60079-15-02, 250-1-03, 02 ption -EX only)	
Class of protection		safety class I (IEC 536)			
Degree of protection		IP 20 (IEC/EN 60529)		
Electromagnetic compatib	 Conducted RI suppression on input Radiated RI suppression 	EN 61000-6-3, EN 61204-3 EN 55011 class B, EN 55022 class B, EN 55011 class B, EN 55022 class B,			
Electromagnetic compatib	ility (EMC), Immunity – Electrostatic discharge (ESD) – Radiated RF field immunity TSP 070/140/360 models: TSP 090/180/600 models:	EN 61000-6-2, EN 612 IEC / EN 61000-4-2 IEC / EN 61000-4-3 IEC / EN 61000-4-3	204-3 4 kV / 8 kV 10 V / m 10 V / m	criteria B criteria A criteria B	
	 Electrical fast transient / burst immunity Surge immunity Immunity to conducted RF disturbances Power frequency field immunity Mains voltage dips and interruptions Voltage sag immunity 	IEC / EN 61000-4-3 IEC / EN 61000-4-4 IEC / EN 61000-4-5 IEC / EN 61000-4-6 IEC / EN 61000-4-8 IEC / EN 61000-4-11 SEMI F47 www.tracopower.com/	2 kV 1 kV / 2 kV 10 V 30 A / m	criteria B criteria B criteria A criteria A criteria B/C	

BAC POW

Industrial Power Supplies TSP Series 70-600 Watt

Environment	- Vibration acc. IEC 60068-2-6;	3 axis, sine sweep, 10 – 55 Hz, 1 g, 1 oct/min
	– Shock acc. IEC 60068-2-27	3 axis, 15 g half sine, 11 ms
Enclosure material		aluminium (chassis) / stainless steel (cover)
Mounting	– DIN-rail mounting	for DIN-rails as per EN 50022-35x15/7.5 (snap-on with self-locking spring)
	– Wall mounting (option)	with wall mounting bracket - see page 9
Connection		detachable screw terminals (plugs included) 2 terminals per output
Remote On/Off connection	– 2 pin molex male terminal KK series	mating connector information (cable not included) www.tracopower.com/products/tsp-jc.pdf
Installation instructions		www.tracopower.com/overview/tsp

Output Power Derating

All specifications valid at nominal input voltage, full load and +25°C after warm-up time unless otherwise stated.

Industrial Power Supplies

TSP Series

70-600 Watt

Function Modules Overview

Redundancy Module:

With this module and two power supplies of the TSP series a highly reliable, true redundant power system can be configured without any additional components. This module provides:

- Operation with true current sharing
- Alarm outputs and redundancy OK signal
 Hot swappable inputs can be loaded up to 15A each (resp. 25A with model TSP REM600)

Models		
Order Code	Output Voltage adj.	Output Power
TSP-REM360	24 VDC	360 W
TSP-REM600	(24 – 27 VDC)	600 W

TSP-REM360 TSP-REM600

TSP-REM datasheet: www.tracopower.com/products/tsp-rem.pdf

Battery Controller Modules + Batteries:

This module provides a professional battery controller to charge and monitor an external lead-acid battery. Together with a power supply of the TSP series and a battery pack a perfect DC-UPS system can be configured. This module provides:

- Battery protection for over voltage, deep discharge, short circuit and reverse connection
- Remote On/Off for battery and power supply
- Alarm outputs for input, output and battery condition
- Controlled end of charge voltage by temperature sensor
- Redundant inputs for two indepedant sources (TSP-BCMU360 only)

Models			
Order Code	Output Voltage	Output Power	
TSP-BCM12	12 VDC	180 W	
TSP-BCM24		360 W	
TSP-BCM24A	24 VDC	600 W	
TSP-BCM48		360 W	
TSP-BCM48A	48 VDC	600 W	
TSP-BCMU360	24/48 VDC	360 W	

TSP-BCM24A TSP-BCM48A

TSP-BCM datasheet: www.tracopower.com/products/tsp-bcm.pdf TSP-BCMU datasheet: www.tracopower.com/products/tsp-bcmu.pdf

Buffer Module:

This module will maintain the output voltage of a 24 VDC power supply during typical mains faults, short time blackouts or voltage dips of up to ten full 50Hz cycles. During this buffer period no deterioration of the 24VDC output voltage will occur. This module provides:

- Capacitor bank for energy storage, no battery needed! Maintenance free, long lifetime, high performance also
- at low temperature.
- Guaranteed Hold-up-time 200ms/25A to 4s/1.2A max.
 Output 24 to 28 VDC, 600 W max.
 Active ready and inhibit signals

Models		
Order Code	Output Voltage	Output Power
TSP-BFM24	24 – 28VDC	600 W

TSP-BFM24

TSP-BFM datasheet: www.tracopower.com/products/tsp-bfm.pdf

University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology Radio Oceanography Laboratory

Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit Model MK3-PW-PA-TX User Manual

April 2022 v. 2

radlab@satlab.hawaii.edu Marine Sciences Building 1000 Pope road Honolulu Hawai'i 96822

FCC Supplier's Declaration of Conformity

University of Hawai'i Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit, model *MK3-PW-PA-TX*.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by University of Hawai'i could void the user's authority to operate the equipment.

University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology Radio Oceanography Laboratory radlab@satlab.hawaii.edu 1000 Pope road Honolulu, HI 96822, U.S.A Phone (808) 956 7098

Warnings

This device contains potentially dangerous high voltages and high frequency radiation. Operation and servicing is restricted to properly trained and certified personnel.

Maximum output power is 50 W (+0.5dB) for frequencies 8 MHz and below and 30 W (+0.5dB) for frequencies 12 MHz and above.

The user's authority to operate this device if connected to any radiating antenna or structure in the United States is contingent on applying for and being awarded a valid license through the FCC Universal Licensing System before transmitting. This device may not be powered up for testing unless connected to a non-radiating resistive load.

Table of Contents

User operation of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX	4
1. Overview	
2. Start-up procedure	5
3. Toggling between signal types	
4. Power-down procedure	6
5. Illustrations.	8

User operation of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX

1. Overview

The unit is programmed to emit a repetition of frequency sweeps (chirps), typically at a rate of 1Hz to 4Hz and an occupied bandwidth of 25 to 220kHz determined by the ITU frequency allocation (see Table 1), resulting in a frequency-modulated continuous wave (FMCW mode, emission designation F1N).

Center	Occupied bandwidth
(MHz)	(kHz)
4.463	50
5.2625	25
13.500	100
16.150	100
24.550	200
26.310	220

Table 1. Allocation for Oceanographic High Frequency Doppler radars in Region 2.

The unit is factory-programmed to start transmitting automatically upon power up at the ITU frequency for which a low-pass filter is factory-fitted. To avoid any erroneous operation that could damage the power amplifier and/or the low-pass filter, or result in unlicensed transmissions, all frequencies are factory-disabled, except the ITU frequency for which a low-pass filter is actually factory-fitted to the unit. Programming the unit to other frequencies is password-protected and reserved to factory-authorized personnel.

If a FCC call sign has been provided at the time of factory-configuration, a full-bandwidth broadcast of the call sign is automatically scheduled every 20 min. Chirps at a rate of 1 kHz are transmitted over the same occupied bandwidth, for short periods corresponding to the dots and dashes of the Morse code, resulting in a similar frequency-modulated continuous wave (emission designation F1N).

The unit can be powered-up in two modes of operation: (a) a test mode, for which the output is connected to a 50Ω non-radiating resistive load, or (b), a live mode, for which the output is connected to a radiating antenna or structure. The user's authority to operate this device in the live mode (b) from a location within the United States is contingent on being awarded a license through the FCC Universal Licensing System. In the absence of a valid FCC license, the device may only be operated in the test mode (a).

The firmware allows programming all operations of the digital synthesizer, including chirping, calibration tones and full-bandwidth call-sign broadcast, using a single ethernet web server interface, configured through the Dynamic Host Configuration Protocol (DHCP; Figure 2). The actual settings of the digital synthesizers are continuously read back from the DDS registers and displayed on a separate diagnostic web page (Figure 3).

To comply with FCC RF exposure requirements, the antennas must be installed to ensure a minimum separation distance from persons while operational as shown in the table below:

Operating Frequency	Minimum Separation Distance
(MHz)	(<i>m</i>)
4.463	10.66
5.2625	10.66
13.500	3.55
16.150	3.55
24.550	2.30
26.310	2.30

Table 2. Minimum separation to comply with FCC RF exposure requirements

2. Start-up procedure

The following steps must be performed in the order given:

- 1. open enclosure and verify that the frequency of the low-pass filter fitted (figure 4) corresponds to the factory-configured frequency marked on the label (figure 3).
- 2. verify that all breakers are off in the down positions (figure 4).
- 3. for mode (a), connect a power attenuator such as a Bird 100-SA-FFN-30 to the N-type RF output of the unit (figure 6).
- 4. for mode (b), connect the cable to the TX antenna, with a minimum cable attenuation of 5 dB (figure 6).
- 5. connect a CAT-6e cable from a local network to the RJ45 jack of the unit (figure 6).
- 6. connect a grounded power cable to the IEC-C13/C14 power inlet (figure 6) and plug into a 120 or 240V outlet (the unit auto-detects the voltage).
- 7. connect the power adapter of the heat-exchanger shown in figure 5 into a 120 or 240V outlet (the unit auto-detects the voltage).
- 8. power up the unit and the heat exchanger.
- 9. enable the power surge suppressor by flipping its breaker to the up position (lower DIN rail, figure 4).
- 10. enable the power supplies by flipping all remaining breakers in sequence from right to left to the up position (middle DIN rails, figure 4).
- 11. tie the 6 grounding connections of the door and close the enclosure.
- 12.verify that the network router has provided an IP address through DHCP (waiting 2-3 minutes may be necessary to let the boot sequence complete).
- 13.open browser on this IP address, verify that a screen similar to figure 1 is obtained.
- 14.click on "Status", verify that a popup screen similar to figure 2 is obtained and that the entry shown for ---DDS-A--- under /FREQ displays the expected factory-configured frequency.

The unit is now operating and transmitting the required signal.

3. Toggling between signal types

Two signal types are allowed: standard frequency-modulated continuous wave chirp for normal radar operation, and continuous tones for calibration. Continuous tones can be programmed at three distinct frequencies: at the lower limit of the allocated bandwidth f0-bw/2, at the center frequency f0 and at the upper limit of the allocated bandwidth f0+bw/2.

To toggle between signal types:

- 1. open a browser on the unit's IP address, obtain a screen similar to figure 1.
- 2. to change between signal types, click on the appropriate button.
- 3. wait 15 sec for the command to execute.
- 4. verify with the "Status" screen that the frequency has been updated.

The unit is now transmitting the required signal.

4. Power-down procedure

The following steps must be performed in the order given:

- 1. open a browser on the unit's IP address, obtain a screen similar to figure 1.
- 2. click on the "Stop" button.
- 3. wait 15 sec for the command to execute.
- 4. verify with the "Status" screen that the frequency has been updated to 0.
- 5. open enclosure.
- 6. disable the power supplies by flipping all breakers in sequence from left to right to the down position (middle DIN rails, figure 4).
- 7. power down the unit and the heat exchanger.
- 8. close enclosure and stow unit.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ool	xmarks <u>T</u> ools <u>H</u> elp					- ¤ 😣
192.168.1.20/select_frequen× +						
\leftrightarrow \rightarrow C \textcircled{a}	○ 👌 192.168.1.20/select_frequer	ncy.html				☆ 🛛 =
System: Status Stop Reboot Region 2:						
Frequency	Bandwidth	Chirp rate	Chirp	Tone	Tone	Tone
MHz	kHz	Hz	fO	fO	f0	fO
fO	bw	r	$\pm bw/2$	-bw/2	0	+bw/2
4.4630	50	1	0	0	Ο	Ο
5.2625	25	1	0	0	0	0
13.500	100	3	0	0	0	0
16.150	100	3	0	0	0	0
24.550	200	4	0	0	0	0
26.310	220	4	0	0	0	0
20.310	220	4		U	0	U

Figure 1. Web interface for programming the synthesizer/transmitter. Only the frequency for which a low-pass filter has been installed can be selected.

\rightarrow C \textcircled{a}	0 8	192.168.1.20/	d-tacq/#DDS					120%	ជ	\bigtriangledown	-
Home Syster	n Firmware	FPGA	Tempe	rature	Power	Тор	Interrupts				
acq400.0 acc	400.2 GPSN	ITP PF	SCLK	CLKD	DDS	COUN	TERS				
* DDS	[IDS A		DDS B -			- DDS C				
+ FIN		25.17E+6									
* INTCLK		302.0E+6		302.0E	+6		302.0E+6				
/ FREQ		4.463E+6		0.0	90		25.17E+6				
0 POTW1		0000		80	90		0000				
1 POTW2		0000		60	90		0000				
2 FTW1	0.014700 03c	61000000	0.00000	0000000000	90	0.083886 1	5798ee2308c				
3 FTW2	0.000000 0000	00000000	0.00000	0000000000	90	0.000000 0	0000000000				
4 DFR	0000	00000125		0000000000	00	G	00000000000				
5 UCR		09000000		000000	00		00000000				
6 RRCR		000001		0000	90		000000				
7 CR	X12	004c8761	X12	2 004c80	41	X12	004c0041				
8 IPDMR		Offf		60	00		0000				
9 QPDMR		Offf		60	90		0000				
a SKRR		00			90		00				
b QDACR		0000		80	90		0000				

Figure 2. Diagnostic page with DDS registers read-back.

5. Illustrations

Figure 3. Above: Synthesizer-Transmitter Unit model MK3-PW-PA-TX, door closed. Below: device identification label, affixed to the top right of the enclosure door. The factoryprogrammed operating frequency and output power are marked, here 16.150 MHz/30W.

	University of Hawai'i at Mānoa Radio Oceanography Laboratory 1000 Pope road Honolulu Hawai'i 96822				
Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit					
Model: MK3-PW-PA	-TX	Serial number: 3-003			
Input voltage: 85–260 V		Input power: 250 W AC			
FCC ID: 2A562-MK	3-PW-PA-TX	Modulation: FMCW mode F1N			
Operating frequency / Bandwidth / RF power:					
🗆 4.4630 MHz / 50 kHz / 50 W		🗆 5.6250 MHz / 25 kHz / 50 W			
🗆 13.500 MHz / 100 kHz / 30 W		■ 16.150 MHz / 100 kHz / 30 W			
🗆 24.550 MHz / 200 kHz / 30 W		🗆 26.310 MHz / 220 kHz / 30 W			

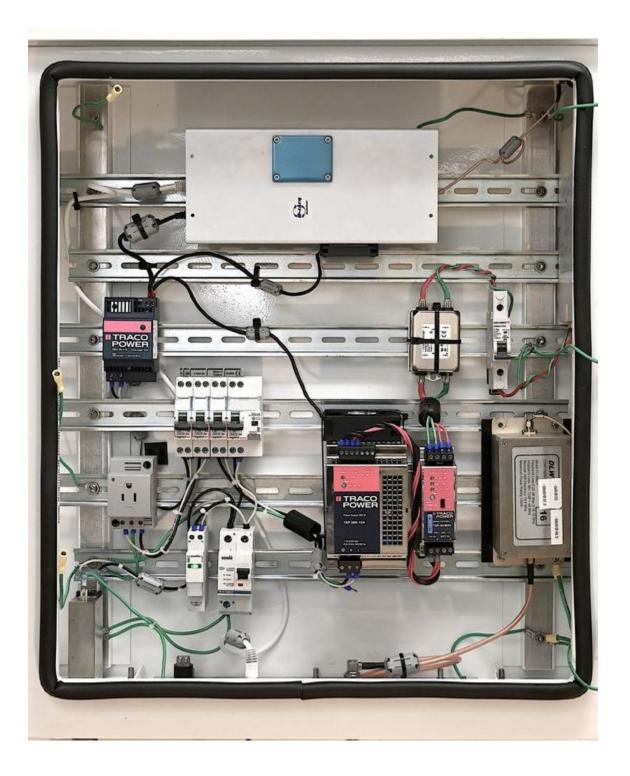


Figure 4. Synthesizer-Transmitter Unit, door open. Bottom rails: power supplies with circuit breakers. Upper rail: digital synthesizer and controller processor. On the right wall: the power amplifier module and the low-pass filter.

Figure 5. Synthesizer-Transmitter Unit, right side view. The twin-fan forced air flow heat exchanger unit is seen.

Figure 6. Synthesizer-Transmitter Unit, bottom view. Connector plate with IEC-C13/C14 power inlet, RJ45 jack for CAT6 Ethernet, N-type bulkhead adapter for cable to antenna (a Bird 100-SA-FFN-30 power attenuator is attached).

Schematics of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX

The Synthesizer-Transmitter Unit is based on commercial off-the-shelf modules and contains: (i) an ultra-low phase noise reference oscillator (OCXO), (ii) direct digital signal synthesizers and controller (DDS-FPGA), (iii) a power amplifier (PA), (iv) an anti-harmonic filter (LPF), (v) power supplies (PS) and (vi) power line filters (RFI).

A detailed description of the modules is provided in companion technical report "Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit: Operational Description", April 2022 issued by the Radio Oceanography Laboratory of the University of Hawai'i at Mānoa.

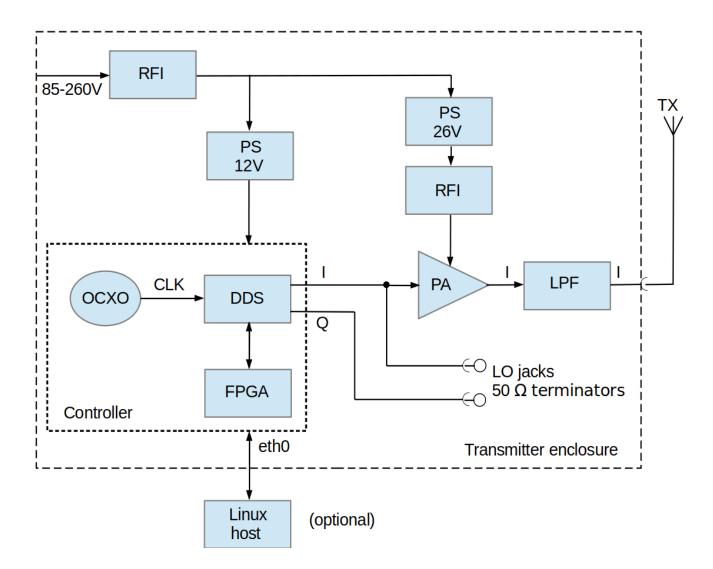
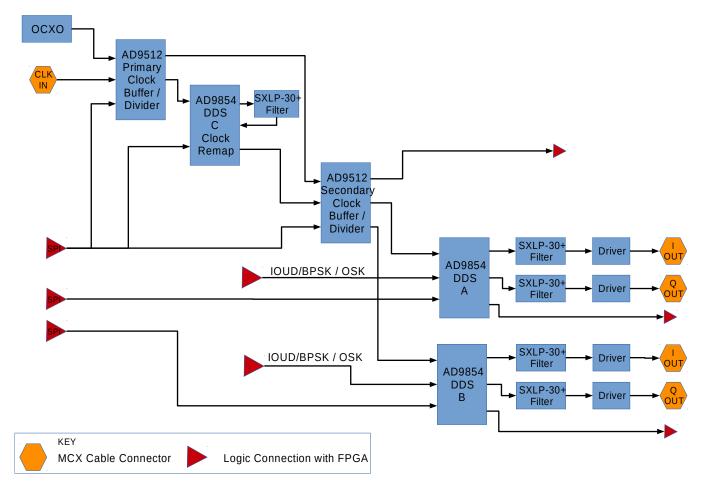



Figure 1. Schematics of the Synthesizer-Transmitter Unit. See Table 1 for list of components and references.

Figure 2. Schematics of the Triple DDS Radar Controller. See Table 2 for list of components and references.

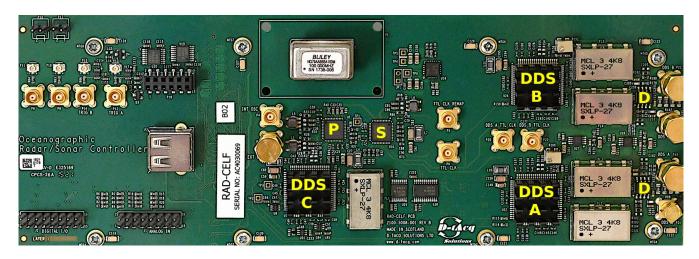


Figure 3. Photo of the Triple DDS Radar Controller board.

Table 1. List of commercial modules incorporated in the Synthesizer-Transmitter Unit

Tag	Description	Reference	Manufacturer
ОСХО	Oven-controlled crystal oscillator, 100 MHz	N79A-optA	Bliley Technologies Inc. 2545 W Grandview Blvd, Erie PA 16506 USA
FPGA	Carrier with embedded FPGA&ARM processors	ACQ1001	D-TACQ Solutions Ltd., International House Stanley Blvd, Blantyre G72 0BN Scotland UK
DDS	Triple DDS Radar Controller	RAD-CELF	id.
PA	Radio-frequency power amplifier	BTM00250-AlphaS	ATomco Technologies 38 Payneham Rd, Stepney, Australia 5069
LPF	Power low-pass filter	FLxxMLP-HFDR	DLW Associates 6 Woodford place, St. Charles MO 63301 USA
PS12V	Industrial power supply	TSP-070-112	Traco Electronic AG Sihlbruggstrasse 111, CH-6340 Baar
PS26V	Industrial power supply	TSP-360-124	id.
RFI-DC	EMI Filter with High Attenuation Performance	FN2030M-Z-20-06	Schaffner Holding AG Nordstrasse 11, CH-4542 Luterbach
RFI-AC	EMI Filter with High Attenuation Performance	FN9266-10-06	id.

Table 2. List of functional integrated circuits used in the Triple DDS Radar Controller

Tag	Description	Reference	Manufacturer
P rimary	Clock/buffer divider	AD9512BCPZ	Analog Devices One Analog Way, Wilmington MA 01887 USA
S econdary	Clock/buffer divider	AD9512BCPZ	id.
DDS-A	Direct digital synthesizer	AD9854ASVZ	id.
DDS-B	Direct digital synthesizer	AD9854ASVZ	id.
DDS-C	Direct digital synthesizer	AD9854ASVZ	id.
Filter	Lumped LC low-pass filter	SXLP-27+	Mini-Ciruits 13 Neptune Ave, Brooklyn NY 11235 USA
Driver	Operational amplifier	OPA2694D	Texas Instruments 12500 TI Blvd., Dallas TX 75243 USA

Note: other commodity components (inductors, capacitors, resistors, voltage regulators) used on the Triple DDS Radar signal synthesizer board have passive functions and do not contribute to the signal generation.

Tune-up procedure of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX

This device has no adjustments to tune output power and adjust reference frequency because these are digitally programmed during the manufacture of the system and drifts are nonexistent within the precision of measurements.

Programming the unit is password-protected and reserved to factory-authorized personnel. There are no user-accessible controls to modify the programming of the unit.

Device identification label

The operating frequency and output power which have been factory-programmed are marked. The label is affixed to the top right of the enclosure door. Example for 16.150 MHz.

	University of Hawai'i at Mānoa Radio Oceanography Laboratory 1000 Pope road Honolulu Hawai'i 96822				
Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit					
Model: MK3-PW	-PA-TX	Serial number: 3-003			
Input voltage: 6	5-260 V	Input power: 250 W AC			
FCC ID: 2A562-	MK3-PW-PA-TX	Modulation: FMCW mode F1N			
Operating frequency / Bandwidth / RF power:					
🗆 4.4630 MHz /	′ 50 kHz / 50 W	🗆 5.6250 MHz / 25 kHz / 50 W			
🗆 13.500 MHz /	/ 100 kHz / 30 W	🔳 16.150 MHz / 100 kHz / 30 W			
🗆 24.550 MHz /	′ 200 kHz / 30 W	🗆 26.310 MHz / 220 kHz / 30 W			
<u> </u>		38			

External photos of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX.

Figure 1. Above: High Frequency Doppler Radar Synthesizer-Transmitter Unit model MK3-PW-PA-TX, serial 3-003, door closed. Below: device identification label, affixed to the top right of the enclosure door. The factory-programmed operating frequency and output power are marked, here for example 16.150 MHz/30W.

	University of Hawai'i at Mānoa Radio Oceanography Laboratory 1000 Pope road Honolulu Hawai'i 96822			
Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit				
Model: MK3-PW-F	PA-TX	Serial number: 3-003		
Input voltage: 65-	-260 V	Input power: 250 W AC		
FCC ID: 2A562-MK3-PW-PA-TX		Modulation: FMCW mode F1N		
Operating frequency / Bandwidth / RF power:				
🗆 4.4630 MHz / 🗄	50 kHz / 50 W	🗆 5.6250 MHz / 25 kHz / 50 W		
🗆 13.500 MHz /	100 kHz / 30 W	■ 16.150 MHz / 100 kHz / 30 W		
24.550 MHz / 3	200 kHz / 30 W	🗆 26.310 MHz / 220 kHz / 30 W		
L				

Figure 2. Synthesizer-Transmitter Unit, left and right side views. The twin-fan forced air flow heat exchanger unit is seen on the right side.

Figure 3. Synthesizer-Transmitter Unit, bottom view. Connector plate with IEC-C13/C14 power inlet, RJ45 inlet for CAT6 ethernet, N-type bulkhead adapter for cable to antenna (a Bird 100-SA-FFN-30 power attenuator is attached).

Fig. 4. Synthesizer-Transmitter Unit, top view. The twin-fan forced air flow heat exchanger unit is seen on the right side.

Fig. 5. Synthesizer-Transmitter Unit, back view (after removing unit from wall supports).

Internal photos of Synthesizer-Transmitter Unit, model MK3-PW-PA-TX.

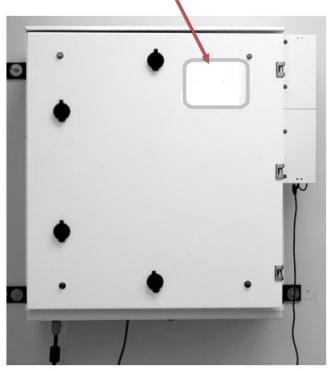
Figure 1. Synthesizer-Transmitter Unit, door open. Bottom rails: power supplies with circuit breakers. Upper rail: digital synthesizer and controller processor with blue thermal bell.

On the right wall: the power amplifier module and the low-pass filter.

Figure 2. Synthesizer-Transmitter Unit, door open, slanted view. The power amplifier module (top) and the low-pass filter (bottom) are seen on the right inner wall.

Figure 3. Upper rail enlarged from Figure 1 and 2, after removal of the aluminum lid and thermal bell, showing the Triple DDS Radar Controller board.

Figure 4. Bottom face of the Triple DDS Radar Controller board.


Figure 5. Carrier board with FPGA, after removal of the Triple DDS Radar Controller board (top face; bottom face not accessible).

Proposed FCC ID label and location for Synthesizer-Transmitter Unit, model *MK3-PW-PA-TX.*

Label

	University of Hawai'i at Mānoa Radio Oceanography Laboratory 1000 Pope road Honolulu Hawai'i 96822				
	Generic High Frequency Doppler Radar Synthesizer-Transmitter Unit				
Model: MK3-P		Serial number: 3-003			
Input voltage:	85-260 V	Input power: 250 W AC			
FCC ID: 2A562	2-MK3-PW-PA-TX	Modulation: FMCW mode F1N			
Operating free	Operating frequency / Bandwidth / RF power:				
🗆 4.4630 MHz	z / 50 kHz / 50 W	🗆 5.6250 MHz / 25 kHz / 50 W			
🗆 13.500 MHz	z / 100 kHz / 30 W	■ 16.150 MHz / 100 kHz / 30 W			
24.550 MHz	z / 200 kHz / 30 W	🗆 26.310 MHz / 220 kHz / 30 W			

Label Location

The device identification label, affixed to the top right of the enclosure door.

RF Exposure – Justification for Exemption from Routine Evaluation

The minimum separation distance, R (m), to qualify for exemption from routine evaluation for rf exposure as detailed in 1.1307 Table 1 (version of April 2021) must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters.

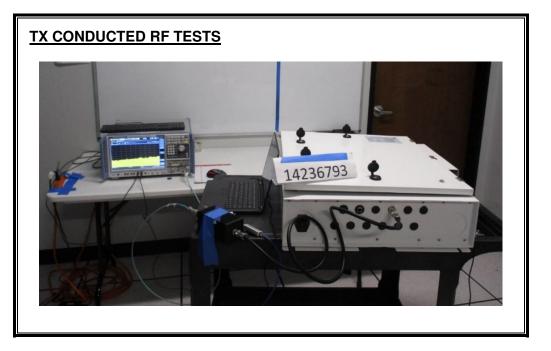
RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	$1,920 \text{ R}^2$
1.34-30	$3,450 \text{ R}^2/\text{f}.$
30-300	3.83 R^2
300-1,500	$0.0128 \text{ R}^2 \text{f}$
1,500-100,000	19.2 R^2

TABLE 1 TO §1.1307(b)(**3**)(i)(**C**)

Using the formulas from table 1 the power thresholds at the separation distances specified for the different operating frequencies for this series of devices are:

Calculat	Calculations to determine ERP thresholds above which routine evaluation for RF exposure would be required.						
			Refer to 1.1307 Table 1 j	for formula.			
f (MHz)	λ/2π (m)	R = Separation Distance * ¹ (m)	ERP Power threshold (W) at distance R (m)	Output Power (dBm) * ²	Ant Gain + Cable Loss (dBi) * ³	ERP (W) * ³	% of Threshold
4.48	10.66	10.66	19525	47.5	-3	17.2	0%
5.25	9.09	10.66	14224	47.5	-3	17.2	0%
13.45	3.55	3.55	240	45.5	-3	10.8	5%
16.10	2.97	5.55	168	45.5	-3	10.8	6%
24.45	1.95	2.30	31	45.5	-3	10.8	35%
26.20	1.82	2.30	27	45.5	-3	10.8	40%

*¹ The minimum separation distance to qualify for exemption from routine evaluation for rf exposure as detailed in 1.1307 Table 1 must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters.

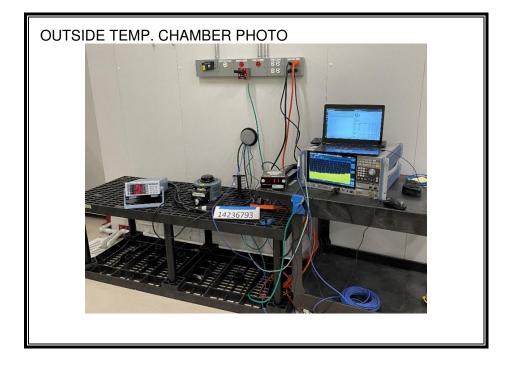

 $*^{2}$ The declared peak conducted output power at the port for this system is 50 W (47 dBm) for 10 MHz and below, and 30 W (45 dBm) for 10 MHz and above, with production tolerance of +0.5 dB.

*³ Declared by manufacturer, a maximum gain of 2 dBi normal-mode helical monopole antenna over finite ground plane and a minimum of 5 dB cable loss of RG213 or RG214 between the RF output and the antenna are used. EIRP (dBm) = P (dBm) + Ant Gain (dBi) – Cable Loss (dB) ERP (dBm) = EIRP (dBm) - 2.15 dB

The ERP for all bands is below the threshold that would require routine evaluation and therefore the system is exempt from routine evaluation when installed with the minimum separation distances detailed in the installation instructions.

9. SETUP PHOTOS

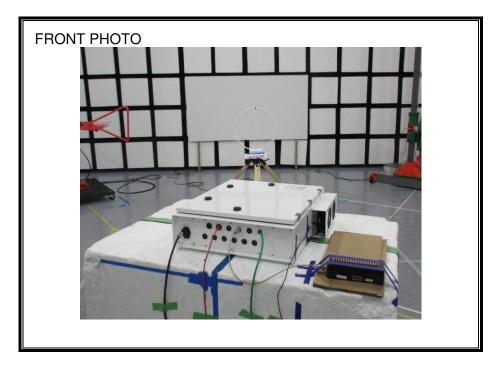
RF CONDUCTED MEASUREMENT SETUP

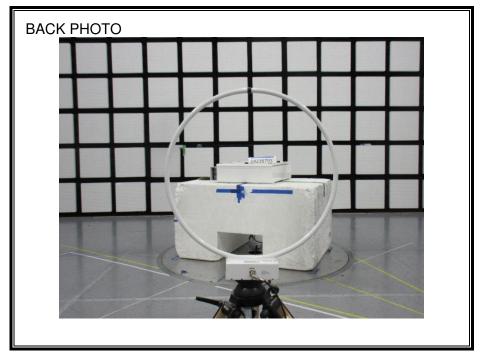


UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 38 of 41

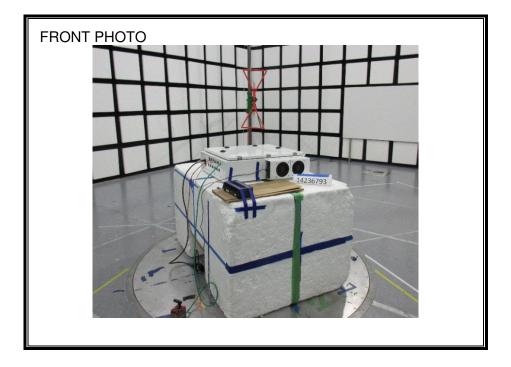
FREQUENCY STABILITY MEASUREMENT SETUP





UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 41


RF RADIATED MEASUREMENT SETUP, 9 kHz - 30 MHz

Page 40 of 41

RF RADIATED MEASUREMENT SETUP, 30 - 1000 MHz

END OF REPORT

Page 41 of 41

CERTIFICATION TEST REPORT

Report Number: 14236793-E1V3

- Applicant : UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.
 - Model : MK3-PW-PA-TX
 - FCC ID : 2A562-MK3-PW-PA-TX
- **EUT Description** : OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
 - Test Standard : FCC CFR 47 PART 90 SUBPART F

Date Of Issue: April 19, 2022

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	04/11/22	Initial Issue	GP Chin
V2	04/14/22	Updated Description of EUT in Section 5.1 Updated Power Summary Table in Section 5.3 Added Notes on Pg. 32 and Pg. 35	GP Chin
V3	04/19/22	Added Note on Pg. 17 in Section 8.3.	GP Chin
V3	04/19/22	Added Note on Pg. 17 In Section 8.3.	GP Chin

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 41

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	СА	LIBRATION AND UNCERTAINTY	6
2	4.1.	METROLOGICAL TRACEABILITY	6
2	4.2.	DECISION RULES	6
2	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQ	UIPMENT UNDER TEST	7
ł	5.1.	DESCRIPTION OF EUT	7
ł	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	7
ł	5.3.	MAXIMUM OUTPUT POWER	8
Ę	5.4.	SOFTWARE AND FIRMWARE	8
6.	DE	SCRIPTION OF TEST SETUP	9
7.	TE	ST AND MEASUREMENT EQUIPMENT	12
8.	AP	PLICABLE LIMITS AND TEST RESULTS	13
ξ	3.1.	DUTY CYCLE	13
٤	3.2.	OCCUPIED BANDWIDTH	15
ξ	3.3.	PEAK OUTPUT POWER	17
ξ	3.4.	FREQUENCY STABILITY	19
ξ	3.5.	TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE	
	8.5		
	8.5		
ξ	3.6.	TX RADIATED SPURIOUS EMISSIONS	30
9.	SE	TUP PHOTOS	38

Page 3 of 41

1. ATTESTATION OF TEST RESULTS

DATE TESTED:	MARCH 9 TH - 17 TH , 2022
SERIAL NUMBER:	3-003
MODEL:	MK3-PW-PA-TX
EUT DESCRIPTION:	OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
COMPANY NAME:	UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
FCC PART 90.103F	Complies	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Approved & Released For UL Verification Services Inc. By:

GIA-PIAO (GP) CHIN OPERATIONS LEADER UL Verification Services Inc.

Tested By:

Paul Barturi

PAUL BASTAKI LABORATORY ENGINEER UL Verification Services Inc.

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following standards:

- FCC CRF 47 Part 2
- FCC CRF Part 90 Subparts F & I
- ANSI C63.26-2015
- Recommendation ITU-R SM.329-10

3. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company No.	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, California, USA	US0104	2324A	208313
	Building 2: 47266 Benicia Street, Fremont, California, USA	US0104	22541	208313
\boxtimes	Building 4: 47658 Kato Rd, Fremont, California, USA	US0104	2324B	208313

Page 5 of 41

4. CALIBRATION AND UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	ULAB
Worst Case Conducted Antenna Port Emission Measurement – Direct Method	1.94 dB
Worst Case Radiated Disturbance, 9 kHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Occupied Channel Bandwidth	±2.75 %
Temperature	±2.26 °C
Voltages	±0.57 %
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 41

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The MK3-PW-PA-TX is an Oceanographic High Frequency Doppler radar consists of two units or subsystems: the synthesizer/transmitter (TX) unit, and an optional receiver/digitizer (RX) unit. It is designed with bare minimum features to ensure low production cost, low power requirement, and easy maintenance.

The operation of the MK3-PW-PA-TX consists of transmitting frequency-modulated continuous radio waves that are channeled along the surface of the conducting ocean as ground waves, in the wavelength range of 10 to 100 m (frequency 3 to 30 MHz). These radio waves are coherently back-scattered by the ocean's surface gravity waves at half the radio wavelength (5 to 50 m), and captured by an array of receive antennas.

For "Region 2", the International Telecommunication Union has recommended, and the Federal Communication Commission has selected dedicated secondary frequency bands for operating Oceanographic High Frequency Doppler radars, as follows:

Frequency Band	Occupied Bandwidth
(MHz)	(kHz)
4.438 - 4.488	50
5.250 - 5.275	25
13.450 – 13.550	100
16.100 – 16.200	100
24.450 – 24.650	200
26.200 - 26.420	220

The digital synthesizer is programmed to emit a repetition of ramps (chirp) with 100% duty cycle at a radar mode rate of 1 Hz to 5 Hz or a call-sign mode rate of 1 kHz, and a bandwidth of 25 to 220 kHz determined by the frequency allocation, resulting in a frequency-modulated continuous wave (FMCW mode, emission designation F1N).

This test report covers the device operating at 4.438 - 4.488 MHz and 5.250 - 5.275 MHz frequency bands, with the slow radar mode rate of 1 Hz – 5 Hz to represent the worst case mode.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radar system utilizes external transmitting antenna which come in the form of normal-mode helical monopole antenna over finite ground plane with a typical gain of 2 dBi. The transmitting antenna is connected to the output port of synthesizer/transmitter via a cable with an attenuation of at least 5 dB, depending on the operating frequency. All antenna port measurements were made at the end of the minimum cable length to determine the power of fundamental and spurious emissions at the antenna input.

Page 7 of 41

5.3. MAXIMUM OUTPUT POWER

The highest peak output power under normal environmental conditions (+20°C and 120 VAC) in each mode is as followed:

Mode	Peak Cond. Pwr (dBm)	Peak Power (dBm EIRP)	Peak Power (W)
4.438 to 4.488 MHz	46.74	43.74	23.66
5.250 to 5.275 MHz	47.02	44.02	25.23

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Canonical Inc., Ubuntu 20.04.3.

The FPGA Controller Firmware used during testing was D-Tacq Solutions Inc., ACQ1001-RADCELF, Release #394.

Page 8 of 41

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

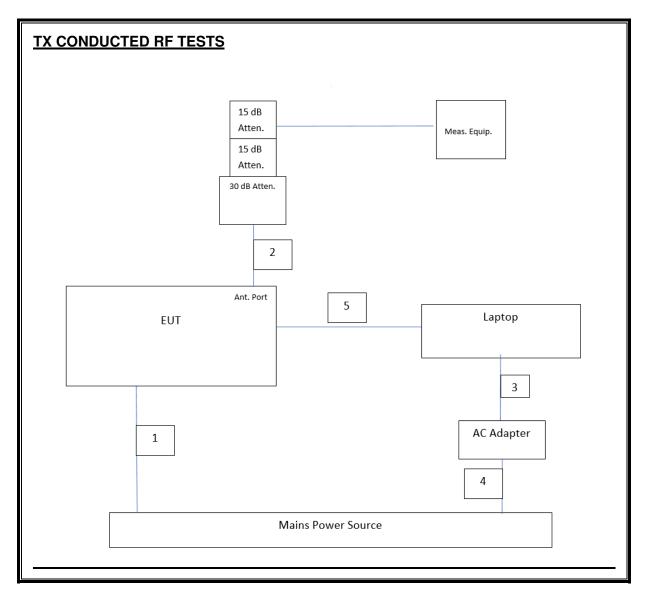
PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number								
Laptop	Laptop Lenovo, Inc Yoga14-20FY2US R9-0KXNVG							
Laptop Power supply								

I/O CABLES

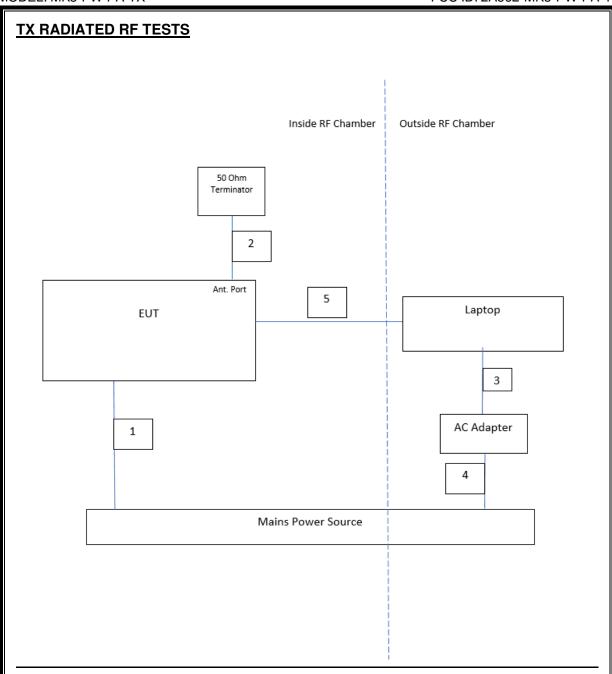
	I/O Cable List										
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks					
1	AC	1	3-prong	Unshielded	2						
2	Ant	1	N-Type	Shielded	2						
3	DC	1	Mag set	Shielded	1						
4	AC	1	3-prong	Shielded	1.8						
5	Ethernet	1	Cat-6	Shielded	2.15						

TEST SETUP

The EUT is connected to a laptop computer. Software within the computer is used to configure and exercise the EUT.


All measurements of Duty Cycle, Occupied Bandwidth, Peak Output Power, T_X Conducted Spurious Emissions and Band-edge were performed at 20°C and 120 VAC nominal, utilizing the conducted test setup with spectrum analyzer.

The total Correction Factor of attenuators and cables was applied as "Offset" to the taken plots of Measured Peak on this report, therefore,


Peak EIRP (dBm) = Measured Peak (dBm) + Cable Loss (dB) + EUT Ant. Gain (dBi)

Page 9 of 41

SETUP DIAGRAMS FOR TESTS

Page 10 of 41

Page 11 of 41

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List									
Description	Manufacturer	Model	Local ID	Last Cal	Cal Due				
Spectrum Analyzer, 50 GHz	Rohde & Schwarz	FSW50	198710	2/22/2022	2/22/2023				
Variable AC Transformer	Superior Electric	3PN136B	44407	CNR	CNR				
Power Analyzer	Yokogawa Electric	WT310E	155294	04/16/2021	04/16/2022				
15 dB Attenuator, 1 W	JFW Indust. Inc.	50F-0150-N		CNR	CNR				
30 dB Attenuator, 100 W	Bird Inc.	100-SA-FFN-30		CNR	CNR				
50 Ohm Terminator	RF-Lambda	RFST200G02NM	T1355	CNR	CNR				
EMI Test Receiver, 44 GHz	Rohde & Schwartz	ESW44	PRE0179367	2/16/2022	2/16/2023				
Antenna, Broadband Hybrid, 30 MHz to 2000 MHz	Sunol Sciences Corp.	JB1	T1199	10/01/21	10/01/2022				
Amplifier, 9 kHz – 1 GHz, 32 dB	Sonoma Instrument	310	175953	02/08/2022	02/08/2023				
Antenna, Passive Loop 30Hz – 1 MHz	Electro-Metrics	EM-6871	170014	06/08/2021	06/08/2022				
Antenna, Passive Loop 100 kHz – 30 MHz	Electro-Metrics	EM-6872	170016	06/08/2021	06/08/2022				
Temperature Chamber	Espec	EWPX 674(2)-(2)12NAL	135568	4/19/19	4/30/22				
UL EMC Radiated Software	Version:	Rev 9.5.21 Jan 2021							

Page 12 of 41

8. APPLICABLE LIMITS AND TEST RESULTS

8.1. DUTY CYCLE

<u>LIMIT</u>

For reporting purposes only.

TEST PROCEDURE

All measurements were performed with the CW signals of $F_c = 4.463$ MHz and $F_c = 5.263$ MHz, representing the 4.438 - 4.488 MHz and 5.250 - 5.275 MHz modes, respectively.

The duty cycle factor is calculated as:

Duty Cycle Factor $(dB) = 10 \times Log (1/x)$, where x = Duty Cycle (linear)

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22

Band	Fc (MHz)	(msec)	(msec)	(linear)	(%)
4.438 - 4.488 MHz	4.463	2000	2000	1.000	100.00
5.250 - 5.275 MHz	5.263	2000	2000	1.000	100.00

4.463 MHz CW Mode

		_		_	_		_	_	×
lti¥iew 📒 I	Duty Cycle 🗙	OBW	X BE	PEAK POWER	× Spur. 1	× Spur. 2	× Spur. 3	×	
	75.00 dBm Of								SG
Att	20 dB 🖷 SM	/T 2 s	5 • VBW 50 MH	z					
Zero Span									• 1Pk Clrw
) dBm									
o dom									
) dBm									
) dBm									
) dBm									
) dBm									
0 dBm									
0 dBm									
dBm									
10 dBm									
20 dBm									
F 4.463 MH					001 pts				200.0 ms
л 4.403 МП	IZ 			1	001 pts		Ready		09.03.202 09:30:4

09:30:48 09.03.2022

5.263 MHz CW Mode

Ref Level 75.00 dBm		× в∈ 3 ● RBW 10 MH	iz	_	X Spur. 2	X Spur. 3	×	
	• SWT 2 s	s 👄 VBW 50 MH	łz					
ero Span								O1Pk C
dBm								
dBm						_		
dBm								_
dBm								
da.u.								
dBm								
dBm								
dBm								
Bm								
dBm								
dBm								
5.263 MHz				1001 pts				200.0

Page 14 of 41

8.2. OCCUPIED BANDWIDTH

RULE PART

§2.1049

<u>LIMIT</u>

99% Bandwidth measured shall fall within the frequency band listed in FCC Part 90.103 (F).

Applicable limits for bands tested in this report is as follows:

Frequency Band
4.438 to 4.488 MHz
5.250 to 5.275 MHz

TEST PROCEDURE

ANSI C63.26-2015 Clause 5.4.4

99% bandwidth measurement function of the spectrum analyzer was used to measure 99% occupied bandwidth.

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22


Mode	Meas. 99% BW (kHz)	Meas. FL (MHz)	Limit (MHz)	Pass/Fail	Meas. FH (MHz)	Limit (MHz)	Pass/Fail
4.438 to 4.488 MHz	48.381	4.4388	4.438	Pass	4.4872	4.488	Pass
5.250 to 5.275 MHz	23.909	5.2506	5.250	Pass	5.2745	5.275	Pass

Page 15 of 41

4.438 - 4.488 MHz Mode

5.250 - 5.275 MHz Mode

Page 16 of 41

8.3. PEAK OUTPUT POWER

RULE PARTS

§2.1046 & §90.205 (r)

<u>LIMIT</u>

Per §90.103 (c)(3): Operations in this band are limited to oceanographic radars using transmitters with a peak equivalent isotropically radiated power (EIRP) not to exceed 25 dBW (316 W or +55 dBm). Oceanographic radars shall not cause harmful interference to, nor claim protection from interference caused by, stations in the fixed or mobile services as specified in §2.106, footnotes 5.132A, 5.145A, and US132A. See Resolution 612 of the ITU Radio Regulations for international coordination requirements and for recommended spectrum sharing techniques.

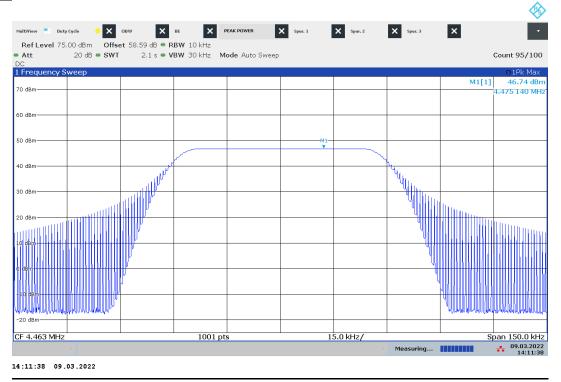
Per Resolution 612 (REV. WRC-12), (d)(2): The Peak E.I.R.P. of an oceanographic radar shall not exceed 25 dBW (316 W or +55 dBm).

TEST PROCEDURE

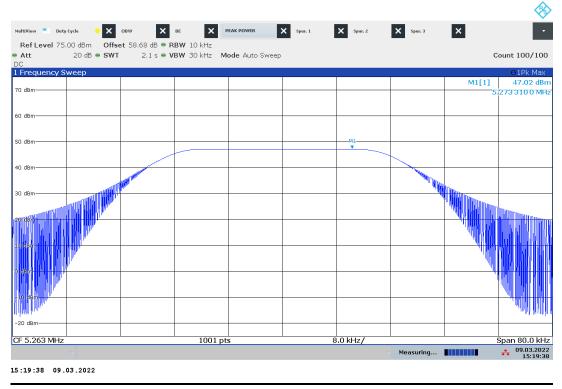
ANSI C63.26-2015 Clause 5.2.3.5

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22


Mode	Frequency	Meas. Peak	Cable Loss	EUT Ant. Gain	Peak EIRP	Peak EIRP	Limit	Pass or
Iviode	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	Fail
4.438 to 4.488 MHz	4.475	46.74	5	2	43.74	23.66	316	Pass
5.250 to 5.275 MHz	5.273	47.02	5	2	44.02	25.23	316	Pass

Peak EIRP is based on the use of normal-mode helical monopole antenna over finite ground plane, which has a maximum gain of 2 dBi, declared by manufacturer. The actual peak EIRP values are based on a minimum of 5 dB cable loss of RG213 or RG214 between the RF output and the antenna (power measurement was made at the end of the cable).


As the signal is a swept CW signal, the instantaneous emission bandwidth is much less than the 10 kHz used for the peak power measurement. The sweep rate is slow enough to not require any correction for desensitization, which is further supported by comparing the peak power levels are the same for the occupied bandwidth measurement made using a 1 kHz RBW and the power measurement.

Page 17 of 41

4.438 to 4.488 MHz Mode

5.250 to 5.275 MHz Mode

Page 18 of 41

8.4. FREQUENCY STABILITY

RULE PARTS

(a)(1): From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

§2.1055 (d)(1): Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

The EUT is operated near the coast and installed only in climate-controlled enclosure or building with the following conditions:

Temperature: -30°C to +50°C Nominal Voltage: 120 VAC

<u>LIMIT</u>

§90.213 (a)

TABLE 1 TO §90.213(a)—MINIMUM FREQUENCY STABILITY

[Parts per million (ppm)]

		Mobile stations			
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power		
Below 25	^{1 2 3} 100	100	200		

Applicable Limit: 100 ppm

TEST PROCEDURES

ANSI C63.26-2015 Clause 5.6.5

All measurements were performed with the CW signals of $F_c = \sim 4.463$ MHz and $F_c = \sim 5.2625$ MHz, representing the 4.438 - 4.488 MHz and 5.250 - 5.275 MHz modes, respectively.

Test procedures for temperature variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C, stabilize the EUT for at least 45 minutes and record the F_c .
- c. Adjust chamber temperature from -30°C to +50°C at 10°C interval. Record maximum change in F_c at each temperature.
- d. A period of at least 45 minutes is provided to allow stabilization of the equipment at each temperature level.

Test procedures for voltage variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C.
- c. The primary supply voltage is varied from 85% to 115% of the nominal value.
- Voltages:

Nominal: 120 VAC 85% of the Nominal: 102 VAC 115% of the Nominal: 138 VAC

Page 20 of 41

Employee ID: 25368 Location: Environmental Chamber Test Date: 3/10/22 - 3/11/22

	4.438 to 4.488 MHz Mode									
	Input		CW (Fc)							
Temp	Power	Meas.	Freq.							
(°C)	(AC)	Freq.	Drift	Pass/Fail						
	x - y	(MHz)	(ppm)							
50	Nominal	4.4630	0.0000	Pass						
40	Nominal	4.4630	0.0000	Pass						
30	Nominal	4.4630	0.0000	Pass						
20	Nominal	4.4630								
10	Nominal	4.4630	0.0000	Pass						
0	Nominal	4.4630	0.0000	Pass						
-10	Nominal	4.4630	0.0000	Pass						
-20	Nominal	4.4630	0.0000	Pass						
-30	Nominal	4.4630	0.0000	Pass						
20	85%	4.4630	0.0000	Pass						
20	115%	4.4630	0.0000	Pass						

	5.250 to	5.275 MHz	z Mode				
		CW (
Temp	Input Power	Meas.	Freq.				
(°C)	(AC)	Freq.	Drift	Pass/Fail			
		(MHz)	(ppm)				
50	Nominal	5.2625	0.0000	Pass			
40	Nominal	5.2625	0.0000	Pass			
30	Nominal	5.2625	0.0000	Pass			
20	Nominal	5.2625					
10	Nominal	5.2625	0.0000	Pass			
0	Nominal	5.2625	0.0000	Pass			
-10	Nominal	5.2625	0.0000	Pass			
-20	Nominal	5.2625	0.0000	Pass			
-30	Nominal	5.2625	0.0000	Pass			
20	85%	5.2625	0.0000	Pass			
20	115%	5.2625	0.0000	Pass			

Page 21 of 41

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8.5. TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (5.275 MHz) = 52.75 MHz$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and band edge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 44 \ dBm \ (25 \ W)$

Applicable Peak Limit = 44 - (43 + 10log(25))= 44 - 57= -13 dBm

Page 22 of 41

ANSI C63.26-2015 Clause 5.7

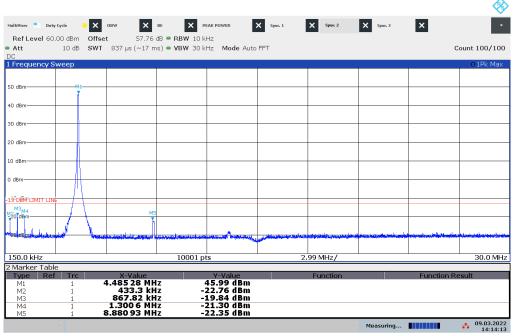
The widest emission bandwidth of EUT was used at 9 kHz – 1 GHz spurious emission tests.

For Bandedge, the measurements were measured by transmitting the CW signals of low-end (F_L) and the high-end (F_H) of each frequency band.

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22 - 3/17/22

Mode	9 - 150 kHz	150 kHz - 30 MHz	30 MHz - 1 GHz	Bandedge
4.438 - 4.488 MHz	Pass	Pass	Pass	Pass
5.250 - 5.275 MHz	Pass	Pass	Pass	Pass


Page 23 of 41

8.5.1. SPURIOUS EMISSIONS

4.438 to 4.488 MHz Mode, 9 - 150 kHz

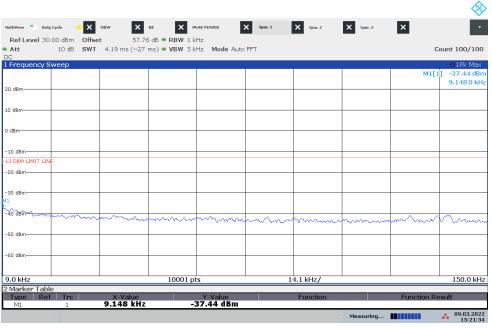
lti¥iew 🗧 Duty Cycle 🚽	🔆 🗙 ови 🗙 ве	X PEAK POWER X	Spur. 1 X Spur. 2	X Spur. 3	
RefLevel 30.00 dBm Att 10 dB		RBW 1 kHz VBW 3 kHz Mode Auto FFT			Count 100/10
ALL IU OD	5441 4.19 ms (~27 ms)	WBW SKHZ Mode Auto FFT			Count 100/10
requency Sweep					o 1Pk Max
					M1[1] -38.19 dB 9.345 0 kl
dBm					9.345 U KI
dBm					
Bm					
dBm					
DBM LIMIT LINE					
) dBm					
dBm-					
MBm					
- my my my	monorm	mmmmm	mound	mont	mmm
) dBm					
, april					
) dBm					
, april					
0 kHz		10001 pts	14.1 kHz/		150.0 kł
Marker Table Type Ref Trc	X-Value	Y-Value	Function	Fun	ction Result
M1 1	9.345 kHz	-38.19 dBm	1 difedent		buonnebuie
				Measuring	09.03.202

4.438 to 4.488 MHz Mode, 150 kHz - 30 MHz

14:14:13 09.03.2022

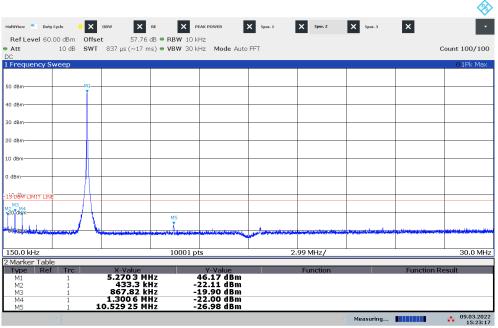
*Marker M1 is the fundamental signal.

Page 24 of 41


4.438 to 4.488 MHz Mode, 30 MHz - 1 GHz

					
Multi¥iew 🍍 Duty Cycle 🔶	X OBW X BE	× PEAK POWER	K Spur. 1 K Spur. 2	× Spur. 3	× •
Ref Level 30.00 dBm	Offset 57.76 dB • RBW	100 kHz			_
Att 5 dB :	SWT 10.1 ms • VBW	300 kHz Mode Auto Sweep			Count 100/100
DC					
Frequency Sweep			1	1	o1Pk Max
					M1[1] -22.52 dBr 536.1440 MH
20 dBm					536,1440 MH
LO dBm					
o ubm					
) dBm					
-10 dBm					
13 DBM LIMIT LINE					
-20 dBm			M1 V		
	بطيفية فرقي الترابي	فليوار ومعالية ومعالية أتعرف وأحربهم والمراجع والمراجع	in the second state on the burners determined	and the start of the second starts	taxa and data a
30 dBm			the state of the second s		
40 dBm					
-50 dBm					
50 ID-					
-60 dBm					
30.0 MHz		10001 pts	97.0 MHz/		1.0 GH
2 Marker Table					
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 1	536.144 MHz	-22.52 dBm			
				Measuring	09.03.202 14:15:5

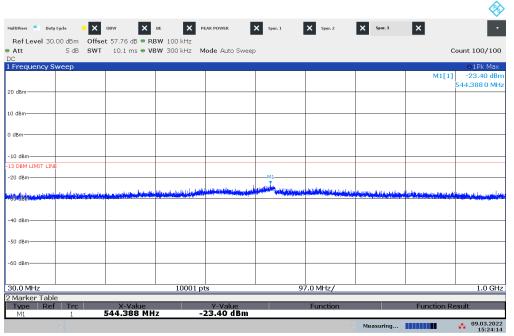
14:15:52 09.03.2022


Page 25 of 41

5.250 to 5.275 MHz Mode, 9 - 150 kHz

15:21:35 09.03.2022

5.250 to 5.275 MHz Mode, 150 kHz to 30 MHz



15:23:18 09.03.2022

*Marker M1 is the fundamental signal.

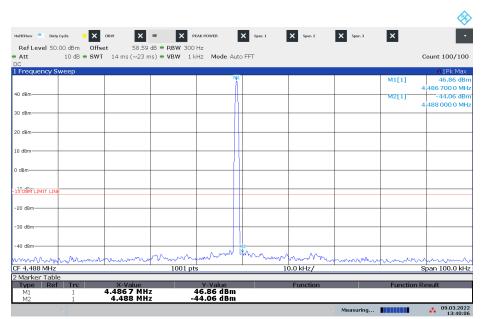
Page 26 of 41

5.250 to 5.275 MHz Mode, 30 MHz - 1 GHz

15:24:14 09.03.2022

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 41


8.5.2. BAND EDGE

4.438 to 4.488 MHz Mode, Low End

ultiView 📒 Duty Cycle	🔆 🗙 овw 🛛 🗙 ве	× PEAK POWER	X Spur. 1	X Spur. 2	Spur. 3	×	•
Ref Level 50.00 dBm	Offset 58.59 dB	• RBW 300 Hz	_		-		_
Att 10 dB	● SWT 14 ms (~23 ms)	VBW 1 kHz Mode Aut	:o FFT			C	Count 100/100
- Frequency Sweep							●1Pk Max
			141			M1[1]	46.85 dBr
dBm			1.0				1.439 300 0 MH
abm-						M2[1]	-44.50 dBn
dBm						4	1.438 000 0 MH
ubm-							
dBm							
UBIII							
dBm							
dom							
IBm							
o dou							
DBM LIMIT LINE							
0 dBm							
o ubiii							
0 dBm							
D dBm							
U UBIII		. A 100	1 1000				
mommen	mound	man	- LALMA (VOW	month	mmm	monom	monthew
4,430 MITZ		1001 pts	1(0.0 kHz/		S	Span 100.0 kHz
Marker Table Type Ref Trc	X-Value	Y-Value		Function		Function R	ocult
M1 1	4.439 3 MHz	46.85 dBm		runcuon		- uncuon R	csult

13:36:53 09.03.2022

4.438 to 4.488 MHz Mode, High End

13:40:06 09.03.2022

Page 28 of 41

5.250 to 5.275 MHz Mode, Low End

		_	_						
lultiView	Spectru	n 🔸 🗙 BE	×						
	.00 dBm Off		B dB 🖷 RBW 3						
Att	10 dB 😑 SW	'T 41.9 ms (~52	ms) 🗢 VBW	1 kHz Mode Aut	o FFT			(Count 100/10
Frequency S	ween								• 1Pk Max
					¥1			M1[1]	47.16 dB
					l l			5	250 599 4 MI
dBm				+ +				M2[1]	-44.65 dB
								5	250 000 0 M
dBm				++					+
dBm					1				+
dBm					-				+
Bm-									
DEM LIMIT LIN									
									-
dBm									
) dBm									
) dBm									
			~ *	1	la ma e	A			
	mmm	monsing		mount		winner wa	mmunn	mound	monter
5.25 MHz			1001 p	ts		10.0 kHz/		S	span 100.0 kl
/arker Tabl		V Value		Y-Value		Function		Function R	a av dt
ſ y pe Ref M1		X-Value 5.250 599 4 M	Hz	47.16 dBm		runction		Function R	esult
M2	1	5.25 M	Hz ·	-44.65 dBm					

15:30:51 09.03.2022

5.250 to 5.275 MHz Mode, High End

1ultiView 🎫 Sp	ectrum X		BE 2 X					
Ref Level 50.00 dBm Att 10 dB	n Offiset 5 8 ● SWT 41.9 ms(^	8.68 dB = RBW		ito FET			c	Count 100/100
с		02 1107 - 121	11012 110000 1					
Frequency Sweep				1				●1Pk Max
							M1[1]	47.19 dB
) dBm							M2[1]	274 400 6 MF
								-44.05 dB
) dBm								1275 000 0 Mi
) dBm								
dBm								
dBm								
อายชีพินเพเซ แพย								
3 DBM LIMIT LINE								
20 dBm								
30 dBm								
10 dBm								
			monument	Manager .	n na			
mount	manpanta			manne		manna		1 State 1 Stat
5.275 MHz		1001	pts	10	D.0 kHz/		S	pan 100.0 kH
Marker Table Type Ref Tro	: X-Value		Y-Value		Function		Function R	ocult
M1 1	5.274 400 6	MHz	47.19 dBm		runcaon		Function R	suit
M2 1	5.275	MHz	-44.05 dBm					

15:35:03 09.03.2022

Page 29 of 41

8.6. TX RADIATED SPURIOUS EMISSIONS

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (5.275 MHz) = 52.75 MHz$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and bandedge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 44 \ dBm \ (25 \ W)$

Applicable Peak Limit = 44 - (43 + 10log(25))= 44 - 57= -13 dBm

Page 30 of 41

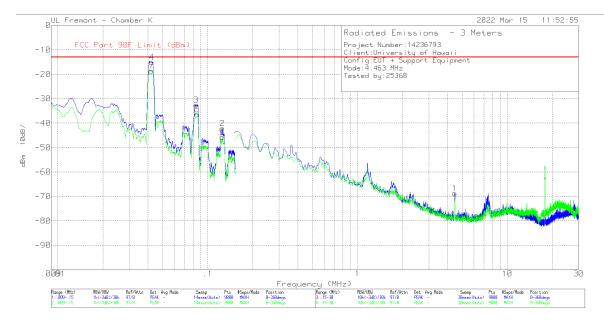
ANSI C63.26-2015 Clause 5.5.4

Below 30 MHz spurious emission testing was performed in chamber other than open area test site. Adequate comparison measurements were confirmed against 30-meter open area test site and sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

RADIATED EMISSION

Where relevant, the following sample calculations are provided:

EIRP(dBm) = Meter Reading (dBuV) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBuV - to - dBm) Unit Conversion Factor @ 3m= 34.27 dBm + 48.3 dB/m + (-32.2) dB + (-95.2)= -44.83 dBm


EIRP(dBm) = Meter Reading (dBm) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBm - to - dBm) Unit Conversion Factor @ 3m= -60 dBm + 28 dB/m + (-27) dB + 11.7= -47.3 dBm

RESULTS

Employee ID: 25368 Location: Chamber K Test Date: 3/14/22 - 3/15/22

Page 31 of 41

4.438 to 4.488 MHz MODE, 9 kHz to 30 MHz

FCC Part 90F 9kHz-30MHz Tx.TST jm4163 14 Mar 2022

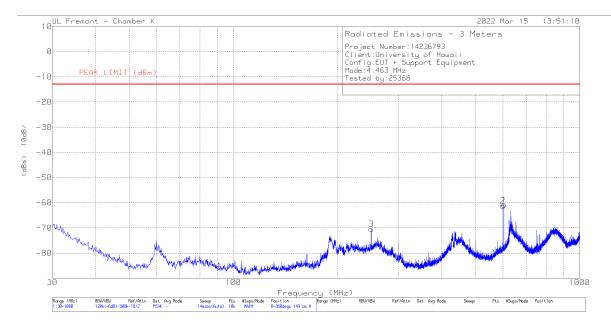
Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
2	.1254	29.47	Pk	55.8	-32.2	-95.2	-42.13	-13	-29.13	0-360	On
3	.0841	39.16	Pk	55.7	-32.2	-95.2	-32.54	-13	-19.54	0-360	On
4	.0424	55.07	Pk	57.2	-32.1	-95.2	-15.03	-13	-2.03	0-360	On
5	.1257	25.85	Pk	55.8	-32.2	-95.2	-45.75	-13	-32.75	0-360	Off
6	.0847	35.23	Pk	55.7	-32.2	-95.2	-36.47	-13	-23.47	0-360	Off
7	.0421	51.48	Pk	57.2	-32.1	-95.2	-18.62	-13	-5.62	0-360	Off
1*	4.4654	21.9	Pk	36.5	-32	-95.2	-68.8	-13	-55.8	0-360	On

Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0404	55.58	Pk	57.2	-32.1	-95.2	-14.52	-13	-1.52	87	On
.0832	39.19	Pk	55.7	-32.2	-95.2	-32.51	-13	-19.51	82	On
.1237	29.07	Pk	55.8	-32.2	-95.2	-42.53	-13	-29.53	97	On
.1239	25.12	Pk	55.8	-32.2	-95.2	-46.48	-13	-33.48	154	Off
.0831	35.78	Pk	55.7	-32.2	-95.2	-35.92	-13	-22.92	193	Off
.0408	52.29	Pk	57.2	-32.1	-95.2	-17.81	-13	-4.81	185	Off

Pk - Peak detector

Page 32 of 41

4.438 to 4.488 MHz MODE, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

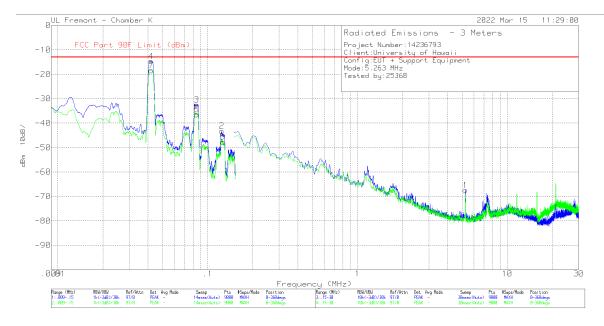
FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

Page 33 of 41

Trace Markers - Pre-scan

Marker	Frequency	Meter	Det	82258 ACF	Amp/Cbl	Sub Factor	Corrected	PEAK LIMIT	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB)	(dB)	(dB)	Reading	(dBm)	(dB)	(Degs)	(cm)	
		(dBm)					(dBm)					
1	603.949	-64.37	Pk	25.2	-28.8	7.2	-60.77	-13	-47.77	0-360	149	Н
2	599.972	-64.71	Pk	25.2	-28.7	6.9	-61.31	-13	-48.31	0-360	149	Н
3	249.996	-73.52	Pk	18	-30	15	-70.52	-13	-57.52	0-360	149	Н
4	603.949	-61.54	Pk	25.2	-28.8	7.2	-57.94	-13	-44.94	0-360	149	V
5	599.972	-61.76	Pk	25.2	-28.7	7.1	-58.16	-13	-45.16	0-360	149	V
6	105.66	-69.47	Pk	18.1	-30.9	12.3	-69.97	-13	-56.97	0-360	149	V

Pk - Peak detector


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
603.972	-63.56	Pk	25.2	-28.8	7.2	-59.96	-13	-46.96	102	152	Н
599.996	-63.82	Pk	25.2	-28.7	6.9	-60.42	-13	-47.42	0	163	Н
250.01	-72.14	Pk	18	-30	15	-69.14	-13	-56.14	264	105	Н
603.978	-60.87	Pk	25.2	-28.8	7.3	-57.17	-13	-44.17	66	161	V
599.995	-60.98	Pk	25.2	-28.7	7.1	-57.38	-13	-44.38	58	157	V
105.689	-67.51	Pk	18.1	-30.9	12.3	-68.01	-13	-55.01	343	129	V

Pk - Peak detector

Page 34 of 41

5.250 to 5.275 MHz MODE, 9 kHz to 30 MHz

FCC Part 90F 9kHz-30MHz Tx.TST jm4163 14 Mar 2022

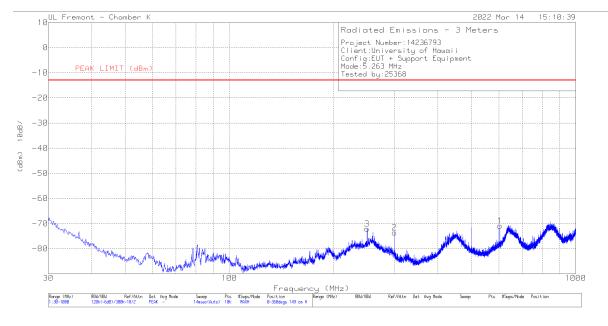
Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
2	.1242	28.42	Pk	55.8	-32.2	-95.2	-43.18	-13	-30.18	0-360	On
3	.0846	39.27	Pk	55.7	-32.2	-95.2	-32.43	-13	-19.43	0-360	On
4	.042	55.47	Pk	57.2	-32.1	-95.2	-14.63	-13	-1.63	0-360	On
5	.1263	23.89	Pk	55.8	-32.2	-95.2	-47.71	-13	-34.71	0-360	Off
6	.0844	35.2	Pk	55.7	-32.2	-95.2	-36.5	-13	-23.5	0-360	Off
7	.042	51.67	Pk	57.2	-32.1	-95.2	-18.43	-13	-5.43	0-360	Off
1*	5.2615	23.96	Pk	35.7	-31.9	-95.2	-67.44	-13	-54.44	0-360	On

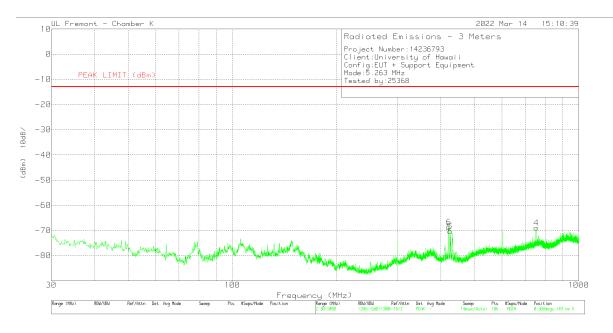
Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0403	55.73	Pk	57.2	-32.1	-95.2	-14.37	-13	-1.37	87	On
.0835	39.32	Pk	55.7	-32.2	-95.2	-32.38	-13	-19.38	79	On
.1232	29.93	Pk	55.8	-32.2	-95.2	-41.67	-13	-28.67	89	On
.1244	25.1	Pk	55.8	-32.2	-95.2	-46.5	-13	-33.5	171	Off
.0826	35.62	Pk	55.7	-32.2	-95.2	-36.08	-13	-23.08	159	Off
.0403	52.1	Pk	57.2	-32.1	-95.2	-18	-13	-5	167	Off


Pk - Peak detector

Page 35 of 41

5.250 - 5.275 MHz MODE, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

Page 36 of 41

Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	603.949	-74.41	Pk	25.2	-28.8	7.2	-70.81	-13	-57.81	0-360	149	Н
2	299.951	-71.14	Pk	19.8	-29.8	7.6	-73.54	-13	-60.54	0-360	149	Н
3	249.899	-75.03	Pk	18	-30	15	-72.03	-13	-59.03	0-360	149	Н
4	754.978	-75.92	Pk	27.3	-28.1	7.8	-68.92	-13	-55.92	0-360	149	V
5	425.954	-70.68	Pk	22.7	-29.3	6.9	-70.38	-13	-57.38	0-360	149	V
6	421.589	-69.28	Pk	22.7	-29.3	7.1	-68.78	-13	-55.78	0-360	149	V

Pk - Peak detector

Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
603.947	-73.40	Pk	25.2	-28.8	7.2	-69.80	-13	-56.80	259	249	Н
300.008	-69.37	Pk	19.8	-29.8	7.6	-71.77	-13	-58.77	236	108	Н
250.002	-72.29	Pk	18	-30	15	-69.29	-13	-56.29	6	139	Н
754.974	-71.53	Pk	27.3	-28.1	7.8	-64.53	-13	-51.53	281	132	V
425.979	-66.74	Pk	22.7	-29.3	6.9	-66.44	-13	-53.44	297	131	V
421.015	-66.62	Pk	22.7	-29.3	7.1	-66.12	-13	-53.12	300	123	V

Pk - Peak detector

Page 37 of 41

CERTIFICATION TEST REPORT

Report Number: 14236793-E2V3

- Applicant : UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.
 - Model : MK3-PW-PA-TX
 - FCC ID : 2A562-MK3-PW-PA-TX
- **EUT Description** : OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
 - Test Standard : FCC CFR 47 PART 90 SUBPART F

Date Of Issue: April 19, 2022

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	04/11/22	Initial Issue	GP Chin
V2	04/14/22	Updated Description of EUT in Section 5.1 Updated Power Summary Table in Section 5.3 Added Notes on Pg. 32 and Pg. 35	GP Chin
V3	04/19/22	Added Note on Pg. 17 in Section 8.3.	GP Chin

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 41

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	1
2.	TES	T METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	5
4	4.1.	METROLOGICAL TRACEABILITY	6
2	1.2.	DECISION RULES	6
2	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	JIPMENT UNDER TEST	7
ł	5.1.	DESCRIPTION OF EUT	7
Ę	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	7
ł	5.3.	MAXIMUM OUTPUT POWER	8
Ę	5.4.	SOFTWARE AND FIRMWARE	8
6.	DES	SCRIPTION OF TEST SETUP	9
7.	TES	T AND MEASUREMENT EQUIPMENT12	2
8.	APF	PLICABLE LIMITS AND TEST RESULTS13	3
٤	3.1.	DUTY CYCLE	3
٤	3. <i>2.</i>	OCCUPIED BANDWIDTH1	5
٤	3.3.	PEAK OUTPUT POWER1	7
٤	3.4.	FREQUENCY STABILITY	9
٤	3.5.	TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE	
	8.5. 8.5.		
		Z. BAND EDGE	
ξ	3.6.	IN RADIATED SPURIOUS EIVIISSIONS	J
9.	SET	UP PHOTOS	3

Page 3 of 41

1. ATTESTATION OF TEST RESULTS

DATE TESTED:	MARCH 8 TH - 17 TH , 2022
SERIAL NUMBER:	3-003
MODEL:	MK3-PW-PA-TX
EUT DESCRIPTION:	OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
COMPANY NAME:	UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
FCC PART 90.103F	Complies		

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Approved & Released For UL Verification Services Inc. By:

GIA-PIAO (GP) CHIN OPERATIONS LEADER UL Verification Services Inc.

Tested By:

Paul Barturi

PAUL BASTAKI LABORATORY ENGINEER UL Verification Services Inc.

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following standards:

- FCC CRF 47 Part 2
- FCC CRF Part 90 Subparts F & I
- ANSI C63.26-2015
- Recommendation ITU-R SM.329-10

3. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company No.	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, California, USA	US0104	2324A	208313
	Building 2: 47266 Benicia Street, Fremont, California, USA	US0104	22541	208313
\boxtimes	Building 4: 47658 Kato Rd, Fremont, California, USA	US0104	2324B	208313

Page 5 of 41

4. CALIBRATION AND UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	ULAB
Worst Case Conducted Antenna Port Emission Measurement – Direct Method	1.94 dB
Worst Case Radiated Disturbance, 9 kHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Occupied Channel Bandwidth	±2.75 %
Temperature	±2.26 °C
Voltages	±0.57 %
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 41

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The MK3-PW-PA-TX is an Oceanographic High Frequency Doppler radar consists of two units or subsystems: the synthesizer/transmitter (TX) unit, and an optional receiver/digitizer (RX) unit. It is designed with bare minimum features to ensure low production cost, low power requirement, and easy maintenance.

The operation of the MK3-PW-PA-TX consists of transmitting frequency-modulated continuous radio waves that are channeled along the surface of the conducting ocean as ground waves, in the wavelength range of 10 to 100 m (frequency 3 to 30 MHz). These radio waves are coherently back-scattered by the ocean's surface gravity waves at half the radio wavelength (5 to 50 m), and captured by an array of receive antennas.

For "Region 2", the International Telecommunication Union has recommended, and the Federal Communication Commission has selected dedicated secondary frequency bands for operating Oceanographic High Frequency Doppler radars, as follows:

Frequency Band	Occupied Bandwidth
(MHz)	(kHz)
4.438 - 4.488	50
5.250 - 5.275	25
13.450 – 13.550	100
16.100 – 16.200	100
24.450 - 24.650	200
26.200 - 26.350	220

The digital synthesizer is programmed to emit a repetition of ramps (chirp) with 100% duty cycle at a radar mode rate of 1 Hz to 5 Hz or a call-sign mode rate of 1 kHz, and a bandwidth of 25 to 220 kHz determined by the frequency allocation, resulting in a frequency-modulated continuous wave (FMCW mode, emission designation F1N).

This test report covers the device operating at 13.45 - 13.55 MHz and 16.10 - 16.20 MHz frequency bands, with the slow radar mode rate of 1 Hz – 5 Hz to represent the worst case mode.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radar system utilizes external transmitting antenna which come in the form of normal-mode helical monopole antenna over finite ground plane with a typical gain of 2 dBi. The transmitting antenna is connected to the output port of synthesizer/transmitter via a cable with an attenuation of at least 5 dB, depending on the operating frequency. All antenna port measurements were made at the end of the minimum cable length to determine the power of fundamental and spurious emissions at the antenna input.

Page 7 of 41

5.3. MAXIMUM OUTPUT POWER

The highest peak output power under normal environmental conditions (+20°C and 120 VAC) in each mode is as followed:

Mode	Peak Cond. Pwr (dBm)	Peak Power (dBm EIRP)	Peak Power (W)
13.45 to 13.55 MHz	44.81	41.81	15.17
16.10 to 16.20 MHz	44.76	41.76	15.00

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Canonical Inc., Ubuntu 20.04.3.

The FPGA Controller Firmware used during testing was D-Tacq Solutions Inc., ACQ1001-RADCELF, Release #394.

Page 8 of 41

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

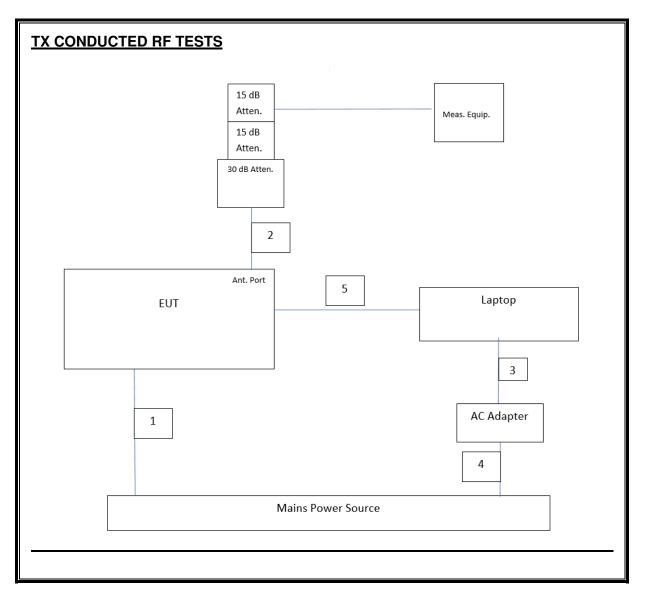
PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number						
Laptop	Lenovo, Inc	Yoga14-20FY2US	R9-0KXNVG			
Laptop Power supply	Lenovo, Inc	ADLX45NCC2A				

I/O CABLES

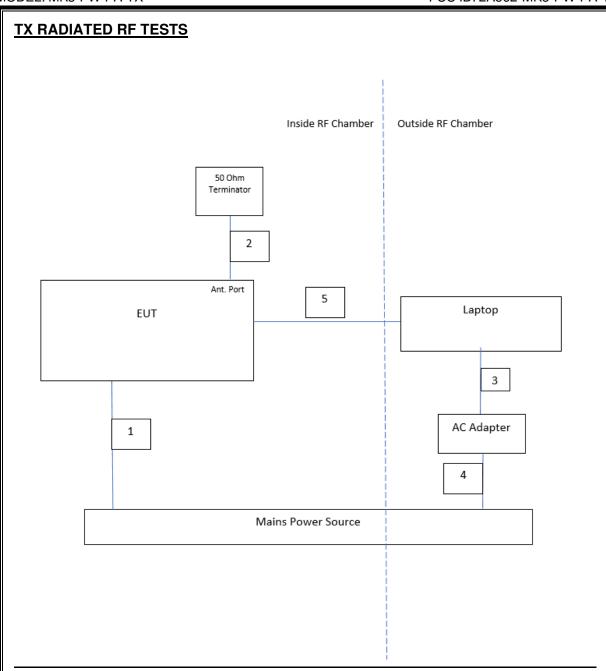
	I/O Cable List							
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	3-prong	Unshielded	2			
2	Ant	1	N-Type	Shielded	2			
3	DC	1	Mag set	Shielded	1			
4	AC	1	3-prong	Shielded	1.8			
5	Ethernet	1	Cat-6	Shielded	2.15			

TEST SETUP

The EUT is connected to a laptop computer. Software within the computer is used to configure and exercise the EUT.


All measurements of Duty Cycle, Occupied Bandwidth, Peak Output Power, T_X Conducted Spurious Emissions and Band-edge were performed at 20°C and 120 VAC nominal, utilizing the conducted test setup with spectrum analyzer.

The total Correction Factor of attenuators and cables was applied as "Offset" to the taken plots of Measured Peak on this report, therefore,


Peak EIRP (dBm) = Measured Peak (dBm) + Cable Loss (dB) + EUT Ant. Gain (dBi)

Page 9 of 41

SETUP DIAGRAMS FOR TESTS

Page 10 of 41

Page 11 of 41

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	Local ID	Last Cal	Cal Due		
Spectrum Analyzer, 50 GHz	Rohde & Schwarz	FSW50	198710	2/22/2022	2/22/2023		
Variable AC Transformer	Superior Electric	3PN136B	44407	CNR	CNR		
Power Analyzer	Yokogawa Electric	WT310E	155294	04/16/2021	04/16/2022		
15 dB Attenuator, 1 W	JFW Indust. Inc.	50F-0150-N		CNR	CNR		
30 dB Attenuator, 100 W	Bird Inc.	100-SA-FFN-30		CNR	CNR		
50 Ohm Terminator	RF-Lambda	RFST200G02NM	T1355	CNR	CNR		
EMI Test Receiver, 44 GHz	Rohde & Schwartz	ESW44	PRE0179367	2/16/2022	2/16/2023		
Antenna, Broadband Hybrid, 30 MHz to 2000 MHz	Sunol Sciences Corp.	JB1	T1199	10/01/21	10/01/2022		
Amplifier, 9 kHz – 1 GHz, 32 dB	Sonoma Instrument	310	175953	02/08/2022	02/08/2023		
Antenna, Passive Loop 30Hz – 1 MHz	Electro-Metrics	EM-6871	170014	06/08/2021	06/08/2022		
Antenna, Passive Loop 100 kHz – 30 MHz	Electro-Metrics	EM-6872	170016	06/08/2021	06/08/2022		
Temperature Chamber	Espec	EWPX 674(2)-(2)12NAL	135568	4/19/19	4/30/22		
UL EMC Radiated Software	Version:	Rev 9.5.21 Jan 2021					

Page 12 of 41 UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1. DUTY CYCLE

<u>LIMIT</u>

For reporting purposes only.

TEST PROCEDURE

All measurements were performed with the CW signals of $F_c = 13.5$ MHz and $F_c = 16.15$ MHz, representing the 13.45 – 13.55 MHz and 16.10 – 16.20 MHz modes, respectively.

The duty cycle factor is calculated as:

Duty Cycle Factor $(dB) = 10 \times Log (1/x)$, where x = Duty Cycle (linear)

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/8/22 – 03/16/22

Band	Fc (MHz)	(msec)	(msec)	(linear)	(%)
13.45 to 13.55 MHz	13.5	2000	2000	1.000	100.00
16.10 TO 16.20 MHz	16.15	2000	2000	1.000	100.00

13.5 MHz CW Mode

MultiView	Spectrum	🕂 🗙 🛛 DL	ity Cycle	<mark>∗</mark> ×			
	.00 dBm Offse						SG
Att	20 dB • SWT						001
Zero Span	L					1	o 1Pk Clrw
'0 dBm							
0 dBm							
0 dBm							-
0 dBm							
0 dBm							
0 dBm							
o ubiii							
0 dBm							
dBm							
10 dBm							
20 dBm						 	 L
F 13.5 MHz				100	l pts	 	 200.0 ms 16.03.202 15:04:5

15:04:52 16.03.2022

16.15 MHz CW Mode

								
MultiView	Duty Cycle	Х овw	× Spur.	К ВЕ	×	8W 2 X		
Ref Level	75.00 dBm				_	_		SGL
Att	20 dB 🖷	SWT 2	ms 🖷 VBW	50 MHz				
1 Zero Spar	<u> </u>							●1Pk Clrw
70 dBm								
60 dBm								
60 dBm								
50 dBm								
40 dBm							 	
30 dBm								
20 dBm								
20 0011								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
CF 16.15 MH	lz				1001	pts		200.0 ms/
							Ready	08.03.2022 15:00:36

15:00:37 08.03.2022

Page 14 of 41

8.2. OCCUPIED BANDWIDTH

RULE PART

§2.1049

<u>LIMIT</u>

99% Bandwidth measured shall fall within the frequency band listed in FCC Part 90.103 (F).

Applicable limits for bands tested in this report is as follows:

Frequency Band					
13.45 to 13.55 MHz					
16.10 to 16.20 MHz					

TEST PROCEDURE

ANSI C63.26-2015 Clause 5.4.4

99% bandwidth measurement function of the spectrum analyzer was used to measure 99% occupied bandwidth.

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/8/22 - 3/9/22

Mode	Meas. 99% BW (kHz)	Meas. FL (MHz)	Limit (MHz)	Pass/Fail	Meas. FH (MHz)	Limit (MHz)	Pass/Fail
13.45 to 13.55 MHz	98.600	13.451	13.45	Pass	13.549	13.55	Pass
5.250 to 5.275 MHz	98.659	16.101	16.10	Pass	16.199	16.2	Pass

Page 15 of 41

13.45 to 13.55 MHz Mode

16.10 to 16.20 MHz Mode

Page 16 of 41

8.3. PEAK OUTPUT POWER

RULE PARTS

§2.1046 & §90.205 (r)

<u>LIMIT</u>

Per §90.103 (c)(3): Operations in this band are limited to oceanographic radars using transmitters with a peak equivalent isotropically radiated power (EIRP) not to exceed 25 dBW (316 W or +55 dBm). Oceanographic radars shall not cause harmful interference to, nor claim protection from interference caused by, stations in the fixed or mobile services as specified in §2.106, footnotes 5.132A, 5.145A, and US132A. See Resolution 612 of the ITU Radio Regulations for international coordination requirements and for recommended spectrum sharing techniques.

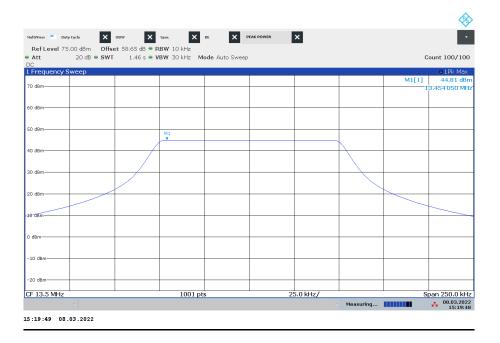
Per Resolution 612 (REV. WRC-12), (d)(2): The Peak E.I.R.P. of an oceanographic radar shall not exceed 25 dBW (316 W or +55 dBm).

TEST PROCEDURE

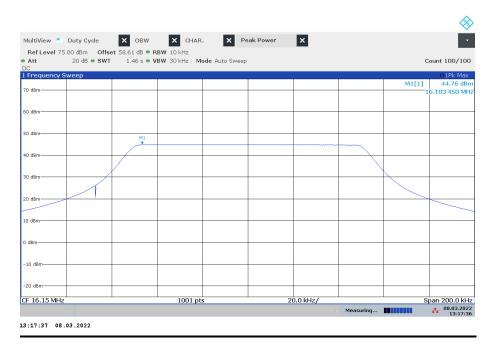
ANSI C63.26-2015 Clause 5.2.3.5

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/8/22


Mode	Frequency	Meas. Peak	Cable Loss	EUT Ant. Gain	Peak EIRP	Peak EIRP	Limit	Pass or
Mode	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	Fail
13.45 to 13.55 MHz	13.454	44.81	5	2	41.81	15.17	316	Pass
16.10 to 16.20 MHz	16.103	44.76	5	2	41.76	15.00	316	Pass

Peak EIRP is based on the use of normal-mode helical monopole antenna over finite ground plane, which has a maximum gain of 2 dBi, declared by manufacturer. The actual peak EIRP values are based on a minimum of 5 dB cable loss of RG213 or RG214 between the RF output and the antenna (power measurement was made at the end of the cable).


As the signal is a swept CW signal, the instantaneous emission bandwidth is much less than the 10 kHz used for the peak power measurement. The sweep rate is slow enough to not require any correction for desensitization, which is further supported by comparing the peak power levels are almost the same for the occupied bandwidth measurement made using a 1 kHz RBW and the power measurement.

Page 17 of 41

13.45 to 13.55 MHz Mode

16.10 to 16.20 MHz Mode

Page 18 of 41

8.4. FREQUENCY STABILITY

RULE PARTS

(a)(1): From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

§2.1055 (d)(1): Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

The EUT is operated near the coast and installed only in climate-controlled enclosure or building with the following conditions:

Temperature: -30°C to +50°C Nominal Voltage: 120 VAC

<u>LIMIT</u>

§90.213 (a)

TABLE 1 TO §90.213(a)—MINIMUM FREQUENCY STABILITY

[Parts per million (ppm)]

		Mobile stations			
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power		
Below 25	^{1 2 3} 100	100	200		

Applicable Limit: 100 ppm

TEST PROCEDURES

ANSI C63.26-2015 Clause 5.6.5

All measurements were performed with the CW signals of Fc = \sim 13.5 MHz and Fc = \sim 16.15 MHz, representing 13.45 to 13.55 MHz Mode and 16.10 to 16.20 MHz Mode, respectively.

Test procedures for temperature variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C, stabilize the EUT for at least 45 minutes and record the F_c .
- c. Adjust chamber temperature from -30°C to +50°C at 10°C interval. Record maximum change in F_c at each temperature.
- d. A period of at least 45 minutes is provided to allow stabilization of the equipment at each temperature level.

Test procedures for voltage variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C.
- c. The primary supply voltage is varied from 85% to 115% of the nominal value.
- Voltages:

Nominal: 120 VAC 85% of the Nominal: 102 VAC 115% of the Nominal: 138 VAC

Page 20 of 41

Employee ID: 25368 Location: Environmental Chamber Test Date: 3/10/22 - 3/11/22

13.45 to 13.55 MHz Mode								
	Input	CW (Fc)						
Temp (°C)	Power (AC)	Meas. Freq. (MHz)	Freq. Drift (ppm)	Pass/Fail				
50	Nominal	13.5000	0.0000	Pass				
40	Nominal	13.5000	0.0000	Pass				
30	Nominal	13.5000	0.0000	Pass				
20	Nominal	13.5000	-	-				
10	Nominal	13.5000	0.0000	Pass				
0	Nominal	13.5000	0.0000	Pass				
-10	Nominal	13.5000	0.0000	Pass				
-20	Nominal	13.5000	0.0000	Pass				
-30	Nominal	13.5000	0.0000	Pass				
20	85%	13.5000	0.0000	Pass				
20	115%	13.5000	0.0000	Pass				

	16.10 to 16.20 MHz Mode							
	Input	CW (Fc)						
Temp	Power	Meas.	Freq.					
(°C)	(AC)	Freq.	Drift	Pass/Fail				
		(MHz)	(ppm)					
50	Nominal	16.1500	0.0000	Pass				
40	Nominal	16.1500	0.0000	Pass				
30	Nominal	16.1500	0.0000	Pass				
20	Nominal	16.1500	-					
10	Nominal	16.1500	0.0000	Pass				
0	Nominal	16.1500	0.0000	Pass				
-10	Nominal	16.1500	0.0000	Pass				
-20	Nominal	16.1500	0.0000	Pass				
-30	Nominal	16.1500	0.0000	Pass				
20	85%	16.1500	0.0000	Pass				
20	115%	16.1500	0.0000	Pass				

Page 21 of 41

8.5. TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (16.20 MHz) = 162.0 MHz$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and bandedge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 42 \ dBm \ (15 \ W)$

Applicable Peak Limit = 42 - (43 + 10log(15))= 42 - 55= $-13 \, dBm$

Page 22 of 41

ANSI C63.26-2015 Clause 5.7

The widest emission bandwidth of EUT was used at 9 kHz – 1 GHz spurious emission tests.

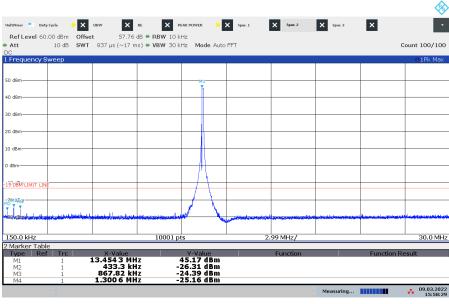
For Bandedge, the measurements were measured by transmitting the CW signals of low-end (F_L) and the high-end (F_H) of each frequency band.

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/8/22 - 3/17/22

Mode	9 - 150 kHz	150 kHz - 30 MHz	30 MHz - 1 GHz	Bandedge
13.45 to 13.55 MHz	Pass	Pass	Pass	Pass
16.10 to 16.20 MHz	Pass	Pass	Pass	Pass

Page 23 of 41

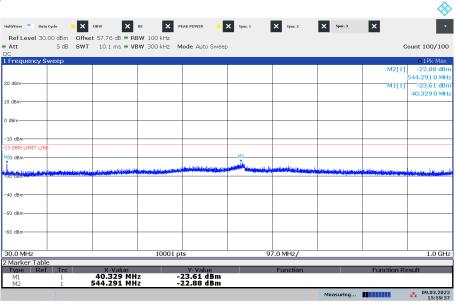

<u></u>

8.5.1. SPURIOUS EMISSIONS

13.45 to 13.55 MHz Mode, 9 - 150 kHz

		RBW 1 kHz VBW 3 kHz Mode Auto	FFT		Count 100/10
C Frequency Sweep					o1Pk Ma
					M1[1] -36.05 dE
dBm					9.2470 k
abin					
dBm					
IBm					
) dBm					
DBM LIMIT LINE					
) dBm					
) dBm					
<u></u>					
J dBm	mmmm	mmmm	mmmmm	mm	man Mann
) dBm					
) dBm					
0 kHz		10001 pts	14.1 kHz/		150.0 k
Aarker Table		10001 pt3	1 III NIE/		10010 K
Type Ref Trc	X-Value	Y-Value -36.05 dBm	Function		Function Result

13.45 to 13.55 MHz Mode, 150 kHz - 30 MHz

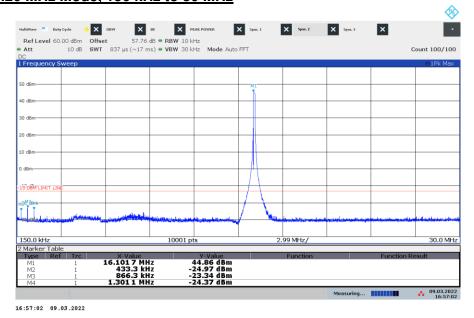


15:58:29 09.03.2022

*Marker M1 is the fundamental signal.

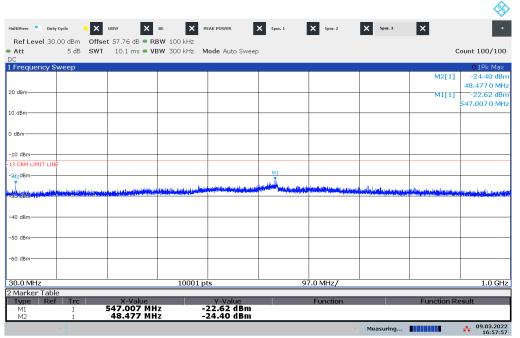
Page 24 of 41


13.45 to 13.55 MHz Mode, 30 MHz - 1 GHz


15:59:37 09.03.2022

Page 25 of 41

16.10 to 16.20 MHz Mode, 9 - 150 kHz


16.10 to 16.20 MHz Mode, 150 kHz to 30 MHz

*Marker M1 is the fundamental signal.

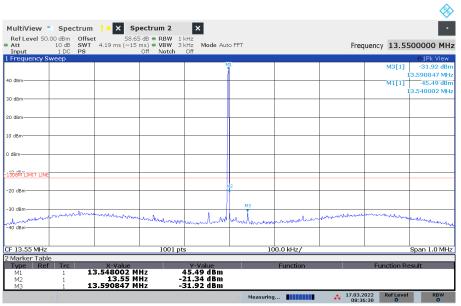
Page 26 of 41

16.10 to 16.20 MHz Mode, 30 MHz - 1 GHz

16:57:57 09.03.2022

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 41

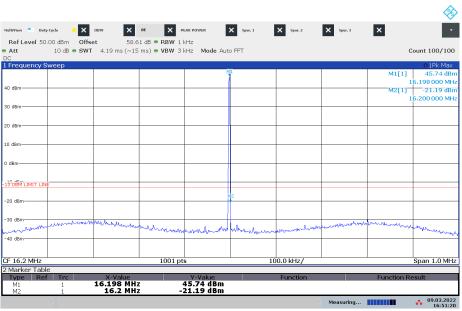

8.5.2. BAND EDGE

13.45 to 13.55 MHz Mode, Low End

Ref Level 50.00 dBm		BE X PEAK POWE	२ 🗙			
Att 10 dB (● SWT 4.19 ms (~15 ms) ●	VBW 3 kHz Mode Auto FFT			C	ount 100/10
Frequency Sweep				ļ,		o 1Pk Max
		MI			M2[1]	-22.13 dB
dBm						3,450 000 MF
ubm					M1[1]	44.86 dB
					1	3.452 000 MF
dBm						
dBm-						
dBm						
dBm						
o dow						
POBM'LIMIT LINE						
		Ma				
0 dBm						
0 dBm	mannamhan					
0 dBm	man man and a server and the server	- many white how here	um man would	manhortenad	mountin	
0 dBm						- marken
13.45 MHz		1001 pts	100.0 kHz/			Span 1.0 M⊢
Marker Table	V V-k	V V-h	Francis		E. mating 2	
Type Ref Trc M1 1	X-Value 13.452 MHz	Y-Value 44.86 dBm	Function		Function Re	suit
M2 1	13.45 MHz	-22.13 dBm				

16:09:57 08.03.2022

13.45 to 13.55 MHz Mode, High End



08:36:31 17.03.2022

16.10 to 16.20 MHz Mode, Low End

	_			_	_	_	_	_	~
altiView 📒 Duty			BE X		X Spur. 1	Spur. 2	X Spur. 3	×	-
Ref Level 50 Att			8.61 dB • RBW 15 ms) • VBW	1 kHz 3 kHz Mode Aut	o FFT			c	ount 100/100
0			,						
Frequency S	weep				11			M2[1]	01Pk Max -21.05 dBr
					1				6.100 000 MH
dBm								M1[1]	45.80 dB
									6.102 000 MH
dBm				_					
) dBm									
dBm									
GDIII									
-									
dBm					l				
DBM LIMIT LIN	E								
					42				
0 dBm				-	*				
30 dBm	1								
kohmen	man	al more and	walken	mammah	Municipality	mphyman	man	muhamp	immenter
0 dBm				and come state to be an					and the second sec
o ubm									
16.1 MHz			1001	pts	. 10	0.0 kHz/			Span 1.0 MH
Marker Tabl	е								
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1	1	16.102 M 16.1 M		45.80 dBm -21.05 dBm					
M2	1	10.1 M	12	-21.05 (18)					
							Measuring		+ 09.03.202 16:48:4

16.10 to 16.20 MHz Mode, High End

16:51:20 09.03.2022

Page 29 of 41

8.6. TX RADIATED SPURIOUS EMISSIONS

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (16.20 \text{ MHz}) = 162.0 \text{ MHz}$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and bandedge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 42 \ dBm \ (15 \ W)$

Applicable Peak Limit = 42 - (43 + 10log(15))= 42 - 55= $-13 \, dBm$

Page 30 of 41

ANSI C63.26-2015 Clause 5.5.4

Below 30 MHz spurious emission testing was performed in chamber other than open area test site. Adequate comparison measurements were confirmed against 30-meter open area test site and sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

RADIATED EMISSION

Where relevant, the following sample calculations are provided:

EIRP(dBm) = Meter Reading (dBuV) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBuV - to - dBm) Unit Conversion Factor @ 3m= 34.27 dBm + 48.3 dB/m + (-32.2) dB + (-95.2)= -44.83 dBm

EIRP(dBm) = Meter Reading (dBm) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBm - to - dBm) Unit Conversion Factor @ 3m= -60 dBm + 28 dB/m + (-27) dB + 11.7= -47.3 dBm

RESULTS

Employee ID: 25368 Location: Chamber K Test Date: 3/14/22 - 3/15/22

Page 31 of 41

13.45 to 13.55 MHz Mode, 9 kHz to 30 MHz

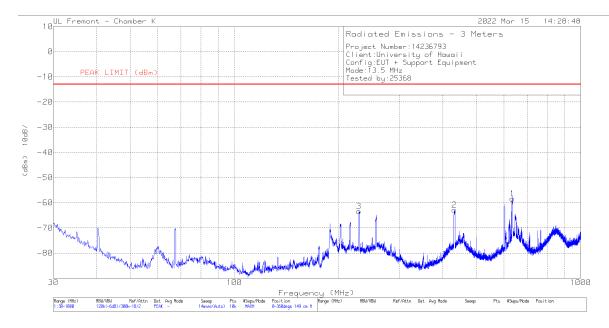
Trace Markers - Prescan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
5	.1274	26.37	Pk	55.8	-32.2	-95.2	-45.23	-13	-32.23	0-360	On
6	.0821	39.37	Pk	55.7	-32.2	-95.2	-32.33	-13	-19.33	0-360	On
7	.0416	55.58	Pk	57.2	-32.1	-95.2	-14.52	-13	-1.52	0-360	On
2	.1242	24.92	Pk	55.8	-32.2	-95.2	-46.68	-13	-33.68	0-360	Off
3	.0858	35.96	Pk	55.8	-32.2	-95.2	-35.64	-13	-22.64	0-360	Off
4	.0419	51.78	Pk	57.2	-32.1	-95.2	-18.32	-13	-5.32	0-360	Off
1*	13.5109	32.64	Pk	34.2	-31.7	-95.2	-60.06	-13	-47.06	0-360	

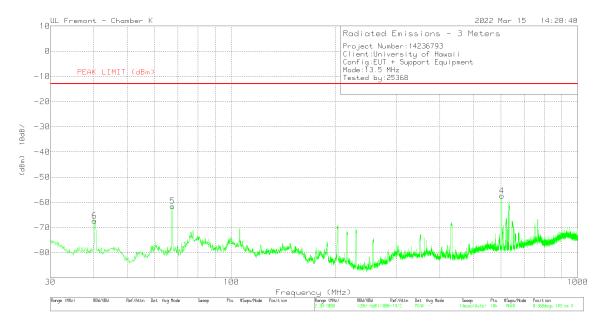
Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0418	55.52	Pk	57.2	-32.1	-95.2	-14.58	-13	-1.58	75	On
.0804	39.83	Pk	55.7	-32.2	-95.2	-31.87	-13	-18.87	77	On
.1267	26.52	Pk	55.8	-32.2	-95.2	-45.08	-13	-32.08	90	On
.1238	25.66	Pk	55.8	-32.2	-95.2	-45.94	-13	-32.94	158	Off
.0839	36.05	Pk	55.7	-32.2	-95.2	-35.65	-13	-22.65	164	Off
.0403	52.07	Pk	57.2	-32.1	-95.2	-18.03	-13	-5.03	178	Off


Pk - Peak detector

Page 32 of 41

13.45 to 13.55 MHz Mode, 30 - 1000 MHz

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

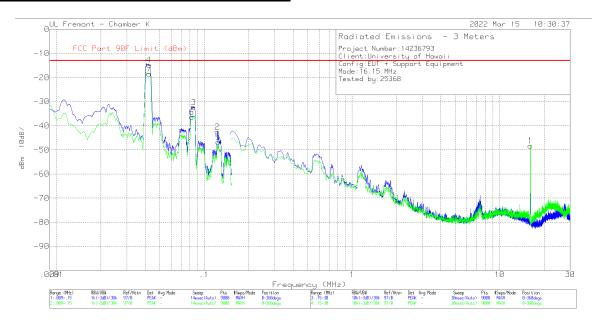
Page 33 of 41

Trace Markers - Prescan

Marker	Frequency (MHz)	Meter Reading	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	()	(dBm)		()			(dBm)		()	(-3-)	(-)	
1	634.407	-67.85	Pk	26	-28.6	12	-58.45	-13	-45.45	0-360	149	Н
2	431.968	-67.35	Pk	22.7	-29.3	11.1	-62.85	-13	-49.85	0-360	149	Н
3	228.947	-63.3	Pk	17.6	-30.1	12.4	-63.4	-13	-50.4	0-360	149	Н
4	603.949	-60.99	Pk	25.2	-28.8	7.2	-57.39	-13	-44.39	0-360	149	V
5	67.636	-54.87	Pk	14.1	-31.1	10.3	-61.57	-13	-48.57	0-360	149	V
6	40.282	-61.77	Pk	19.9	-31.4	5.9	-67.37	-13	-54.37	0-360	149	V

Pk - Peak detector

Radiated Emissions – Final Data


Frequency	Meter	Det	82258 ACF	Amp/Cbl	Sub Factor	Corrected	PEAK LIMIT	Margin	Azimuth	Height	Polarity
(MHz)	Reading		(dB)	(dB)	(dB)	Reading	(dBm)	(dB)	(Degs)	(cm)	
	(dBm)					(dBm)					
634.256	-67.26	Pk	26	-28.6	12	-57.86	-13	-44.86	3	153	Н
431.863	-66.46	Pk	22.7	-29.3	11	-62.06	-13	-49.06	161	158	Н
229.034	-63.28	Pk	17.6	-30.1	12.5	-63.28	-13	-50.28	311	154	Н
603.982	-60.39	Pk	25.2	-28.8	7.3	-56.69	-13	-43.69	70	165	V
67.5132	-53.88	Pk	14.1	-31.1	10.4	-60.48	-13	-47.48	9	115	V
40.4901	-59.75	Pk	19.7	-31.4	6.2	-65.25	-13	-52.25	62	100	V

Pk - Peak detector

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 41

REPORT NO: 14236793-E2V3 MODEL: MK3-PW-PA-TX 16.10 to 16.20 MHz Mode, 9 kHz to 30 MHz

FCC Port 90F 9kHz-30MHz Tx.TST .jm4163 14 Mar 2022

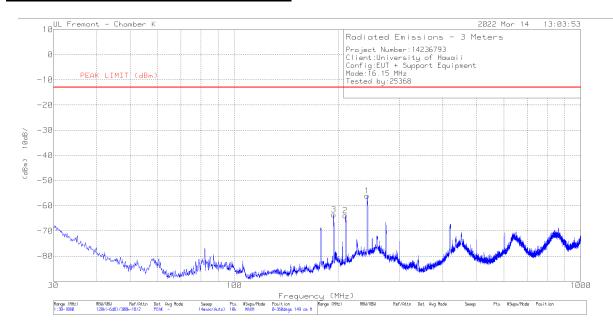
Trace Markers - Prescan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
2	.1233	29.14	Pk	55.8	-32.2	-95.2	-42.46	-13	-29.46	0-360	On
3	.085	39.41	Pk	55.7	-32.2	-95.2	-32.29	-13	-19.29	0-360	On
4	.0424	55.4	Pk	57.2	-32.1	-95.2	-14.7	-13	-1.7	0-360	On
5	.1246	24.85	Pk	55.8	-32.2	-95.2	-46.75	-13	-33.75	0-360	Off
6	.0827	35.37	Pk	55.7	-32.2	-95.2	-36.33	-13	-23.33	0-360	Off
7	.0425	51.65	Pk	57.2	-32.1	-95.2	-18.45	-13	-5.45	0-360	Off
1	16.1379	44.73	Pk	33.9	-31.7	-95.2	-48.27	-13	-35.27	0-360	

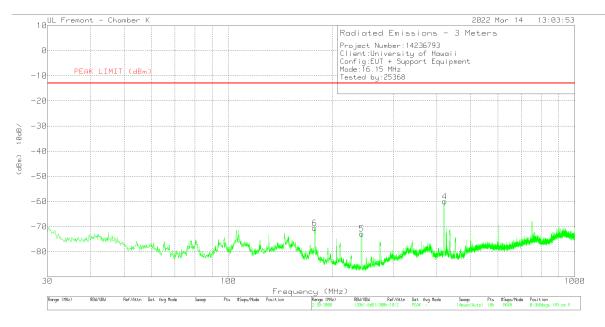
Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0404	55.78	Pk	57.2	-32.1	-95.2	-14.32	-13	-1.32	82	On
.0848	39.64	Pk	55.7	-32.2	-95.2	-32.06	-13	-19.06	91	On
.1227	29.18	Pk	55.8	-32.2	-95.2	-42.42	-13	-29.42	86	On
.1229	25.25	Pk	55.8	-32.2	-95.2	-46.35	-13	-33.35	144	Off
.0816	35.96	Pk	55.7	-32.2	-95.2	-35.74	-13	-22.74	163	Off
.0407	52.22	Pk	57.2	-32.1	-95.2	-17.88	-13	-4.88	171	Off


Pk - Peak detector

Page 35 of 41

REPORT NO: 14236793-E2V3 MODEL: MK3-PW-PA-TX 16.10 to 16.20 MHz Mode, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

Page 36 of 41

Trace Markers – Prescan

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	241.654	-58.2	Pk	18	-30.1	14.3	-56	-13	-43	0-360	149	Н
2	209.353	-58.92	Pk	17.1	-30.2	8.1	-63.92	-13	-50.92	0-360	149	Н
3	193.542	-59.22	Pk	18.1	-30.3	7.9	-63.52	-13	-50.52	0-360	149	Н
4	420.813	-60.36	Pk	22.7	-29.4	7.1	-59.96	-13	-46.96	0-360	149	V
5	242.721	-67.95	Pk	18	-30	7.1	-72.85	-13	-59.85	0-360	149	V
6	177.246	-67.32	Pk	17.6	-30.4	9.5	-70.62	-13	-57.62	0-360	149	V

Pk - Peak detector

Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
242.155	-61.44	Pk	18	-30.1	14.3	-59.24	-13	-46.24	302	128	Н
210.447	-63.48	Pk	17.1	-30.2	8.3	-68.28	-13	-55.28	34	165	Н
194.04	-67.26	Pk	18.2	-30.3	7.9	-71.46	-13	-58.46	22	174	Н
421.097	-58.87	Pk	22.7	-29.3	7.1	-58.37	-13	-45.37	302	117	V
242.491	-66.6	Pk	18	-30	7.1	-71.5	-13	-58.5	80	200	V
177.177	-64.44	Pk	17.6	-30.4	9.5	-67.74	-13	-54.74	130	109	V

Pk - Peak detector

Page 37 of 41

CERTIFICATION TEST REPORT

Report Number: 14236793-E3V3

- Applicant : UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.
 - Model : MK3-PW-PA-TX
 - FCC ID : 2A562-MK3-PW-PA-TX
- **EUT Description :** OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
 - Test Standard : FCC CFR 47 PART 90 SUBPART F

Date Of Issue: April 19, 2022

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	04/11/22	Initial Issue	GP Chin
V2	04/14/22	Updated Description of EUT in Section 5.1 Updated Power Summary Table in Section 5.3 Added Notes on Pg. 32 and Pg. 35 Updated Limit Table in Section 8.4	GP Chin
V3	04/19/22	Added Note on Pg. 17 in Section 8.3.	GP Chin

Page 2 of 41

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	4
2.	TES	T METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	6
2	4.1.	METROLOGICAL TRACEABILITY	6
2	4.2.	DECISION RULES	6
2	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	JIPMENT UNDER TEST	7
Ę	5.1.	DESCRIPTION OF EUT	7
Ę	5. <i>2.</i>	DESCRIPTION OF AVAILABLE ANTENNAS	7
ł	5.3.	MAXIMUM OUTPUT POWER	8
ł	5.4.	SOFTWARE AND FIRMWARE	8
6.	DES	SCRIPTION OF TEST SETUP	9
7.	TES	T AND MEASUREMENT EQUIPMENT1	2
8.	APF	PLICABLE LIMITS AND TEST RESULTS1	3
٤	3.1.	DUTY CYCLE	3
ξ	<i>3.2.</i>	OCCUPIED BANDWIDTH1	5
٤	3.3.	PEAK OUTPUT POWER1	7
٤	3.4.	FREQUENCY STABILITY	9
٤	3.5.	TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE2	
	8.5. 8.5.		
		Z. BAND EDGEZ. TX RADIATED SPURIOUS EMISSIONS	
ξ	3.6.	IN RADIATED SPURIOUS EINISSIONS	U
9.	SET	UP PHOTOS	8

Page 3 of 41

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	MARCH 8 TH - 15 TH , 2022
SERIAL NUMBER:	3-003
MODEL:	MK3-PW-PA-TX
EUT DESCRIPTION:	OCEANOGRAPHIC HIGH FREQUENCY DOPPLER RADAR
COMPANY NAME:	UNIVERSITY OF HAWAII 1000 POPE ROAD, MSB 402, HONOLULU, HI 96822, U.S.A.

STANDARD	TEST RESULTS
FCC PART 90.103F	Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Approved & Released For UL Verification Services Inc. By:

GIA-PIAO (GP) CHIN OPERATIONS LEADER UL Verification Services Inc.

Tested By:

Paul Barturi

PAUL BASTAKI LABORATORY ENGINEER UL Verification Services Inc.

Page 4 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following standards:

- FCC CRF 47 Part 2
- FCC CRF Part 90 Subparts F & I
- ANSI C63.26-2015
- Recommendation ITU-R SM.329-10

3. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company No.	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, California, USA	US0104	2324A	208313
	Building 2: 47266 Benicia Street, Fremont, California, USA	US0104	22541	208313
\boxtimes	Building 4: 47658 Kato Rd, Fremont, California, USA	US0104	2324B	208313

Page 5 of 41

4. CALIBRATION AND UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	ULAB
Worst Case Conducted Antenna Port Emission Measurement – Direct Method	1.94 dB
Worst Case Radiated Disturbance, 9 kHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Occupied Channel Bandwidth	±2.75 %
Temperature	±2.26 °C
Voltages	±0.57 %
Time	±3.39 %

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 41

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The MK3-PW-PA-TX is an Oceanographic High Frequency Doppler radar consists of two units or subsystems: the synthesizer/transmitter (TX) unit, and an optional receiver/digitizer (RX) unit. It is designed with bare minimum features to ensure low production cost, low power requirement, and easy maintenance.

The operation of the MK3-PW-PA-TX consists of transmitting frequency-modulated continuous radio waves that are channeled along the surface of the conducting ocean as ground waves, in the wavelength range of 10 to 100 m (frequency 3 to 30 MHz). These radio waves are coherently back-scattered by the ocean's surface gravity waves at half the radio wavelength (5 to 50 m), and captured by an array of receive antennas.

For "Region 2", the International Telecommunication Union has recommended, and the Federal Communication Commission has selected dedicated secondary frequency bands for operating Oceanographic High Frequency Doppler radars, as follows:

Frequency Band	Occupied Bandwidth
(MHz)	(kHz)
4.438 - 4.488	50
5.250 - 5.275	25
13.450 – 13.550	100
16.100 – 16.200	100
24.450 - 24.650	200
26.200 - 26.420	220

The digital synthesizer is programmed to emit a repetition of ramps (chirp) with 100% duty cycle at a radar mode rate of 1 Hz to 5 Hz or a call-sign mode rate of 1 kHz, and a bandwidth of 25 to 220 kHz determined by the frequency allocation, resulting in a frequency-modulated continuous wave (FMCW mode, emission designation F1N).

This test report covers the device operating at 24.45 - 24.65 MHz and 26.20 - 26.42 MHz frequency bands, with the slow radar mode rate of 1 Hz – 5 Hz to represent the worst case mode.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radar system utilizes external transmitting antenna which come in the form of normal-mode helical monopole antenna over finite ground plane with a typical gain of 2 dBi. The transmitting antenna is connected to the output port of synthesizer/transmitter via a cable with an attenuation of at least 5 dB, depending on the operating frequency. All antenna port measurements were made at the end of the minimum cable length to determine the power of fundamental and spurious emissions at the antenna input.

Page 7 of 41

5.3. MAXIMUM OUTPUT POWER

The highest peak output power under normal environmental conditions (+20°C and 120 VAC) in each mode is as followed:

Mode	Peak Cond. Pwr (dBm)	Peak Power (dBm EIRP)	Peak Power (W)
24.45 to 24.65 MHz	45.08	42.08	16.14
26.20 to 26.42 MHz	44.93	41.93	15.60

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Canonical Inc., Ubuntu 20.04.3.

The FPGA Controller Firmware used during testing was D-Tacq Solutions Inc., ACQ1001-RADCELF, Release #394.

Page 8 of 41

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

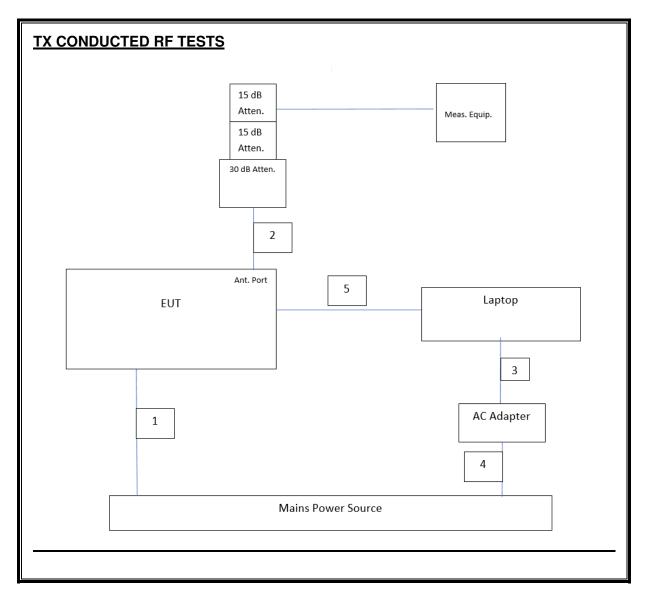
PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number								
Laptop	Lenovo, Inc	Yoga14-20FY2US	R9-0KXNVG					
Laptop Power supply Lenovo, Inc ADLX45NCC2A								

I/O CABLES

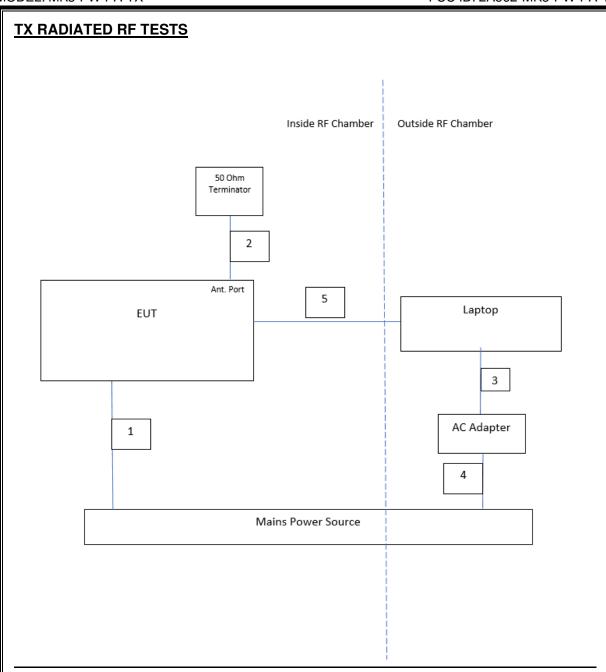
	I/O Cable List									
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks				
1	AC	1	3-prong	Unshielded	2					
2	Ant	1	N-Type	Shielded	2					
3	DC	1	Mag set	Shielded	1					
4	AC	1	3-prong	Shielded	1.8					
5	Ethernet	1	Cat-6	Shielded	2.15					

TEST SETUP

The EUT is connected to a laptop computer. Software within the computer is used to configure and exercise the EUT.


All measurements of Duty Cycle, Occupied Bandwidth, Peak Output Power, T_X Conducted Spurious Emissions and Band-edge were performed at 20°C and 120 VAC nominal, utilizing the conducted test setup with spectrum analyzer.

The total Correction Factor of attenuators and cables was applied as "Offset" to the taken plots of Measured Peak on this report, therefore,


Peak EIRP (dBm) = Measured Peak (dBm) + Cable Loss (dB) + EUT Ant. Gain (dBi)

Page 9 of 41

SETUP DIAGRAMS FOR TESTS

Page 10 of 41

Page 11 of 41

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	Local ID	Last Cal	Cal Due			
Spectrum Analyzer, 50 GHz	Rohde & Schwarz	FSW50	198710	2/22/2022	2/22/2023			
Variable AC Transformer	Superior Electric	3PN136B	44407	CNR	CNR			
Power Analyzer	Yokogawa Electric	WT310E	155294	04/16/2021	04/16/2022			
15 dB Attenuator, 1 W	JFW Indust. Inc.	50F-0150-N		CNR	CNR			
30 dB Attenuator, 100 W	Bird Inc.	100-SA-FFN-30		CNR	CNR			
50 Ohm Terminator	RF-Lambda	RFST200G02NM	T1355	CNR	CNR			
EMI Test Receiver, 44 GHz	Rohde & Schwartz	ESW44	PRE0179367	2/16/2022	2/16/2023			
Antenna, Broadband Hybrid, 30 MHz to 2000 MHz	Sunol Sciences Corp.	JB1	T1199	10/01/21	10/01/2022			
Amplifier, 9 kHz – 1 GHz, 32 dB	Sonoma Instrument	310	175953	02/08/2022	02/08/2023			
Antenna, Passive Loop 30Hz – 1 MHz	Electro-Metrics	EM-6871	170014	06/08/2021	06/08/2022			
Antenna, Passive Loop 100 kHz – 30 MHz	Electro-Metrics	EM-6872	170016	06/08/2021	06/08/2022			
Temperature Chamber	Espec	EWPX 674(2)-(2)12NAL	135568	4/19/19	4/30/22			
UL EMC Radiated Software	Version:	Rev 9.5.21 Jan 2021						

Page 12 of 41

8. APPLICABLE LIMITS AND TEST RESULTS

8.1. DUTY CYCLE

<u>LIMIT</u>

For reporting purposes only.

TEST PROCEDURE

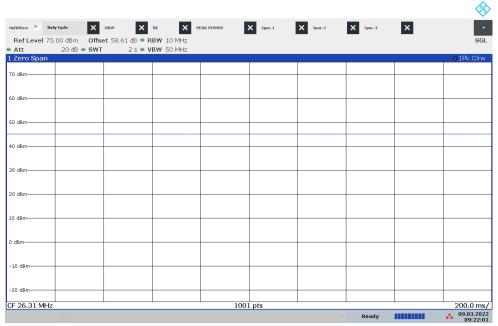
All measurements were performed with the CW signals of $F_c = 24.55$ MHz and $F_c = 26.31$ MHz, representing the 24.45 – 24.65 MHz and 26.20 – 26.42 MHz modes, respectively.

The duty cycle factor is calculated as:

Duty Cycle Factor $(dB) = 10 \times Log (1/x)$, where x = Duty Cycle (linear)

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22


Band	Fc (MHz)	(msec)	(msec)	(linear)	(%)
24.45 - 24.65 MHz	24.55	2000	2000	1.000	100.00
26.20 - 26.42 MHz	26.31	2000	2000	1.000	100.00

24.55 MHz CW Mode

MultiView 🗧	Duty Cycle 🗙	OBW	К ВЕ	PEAK POWER	× Spur. 1	X Spur. 2	× Spur. 3	×	
	1 75.00 dBm Of	fset 58.61 dB	• RBW 10 MH	z	_		_	_	SGI
	20 dB 🖷 SW	/T 2.s	• VBW 50 MH	z					
Zero Spa	an l								●1Pk Clrw
'0 dBm									
0 dBm									
50 dBm									
io ubiii									
Ю dBm									
30 dBm									
20 dBm									
.0 dBm									
) dBm									1
10 dBm									
20 dBm									
C 04 FE 1	41.1-				001 = t=				
F 24.55 N	162			1	.001 pts				200.0 ms 09.03.202 08:10:5

08:10:55 09.03.2022

26.31 MHz CW Mode

09:22:02 09.03.2022

Page 14 of 41

8.2. OCCUPIED BANDWIDTH

RULE PART

§2.1049

<u>LIMIT</u>

99% Bandwidth measured shall fall within the frequency band listed in FCC Part 90.103 (F).

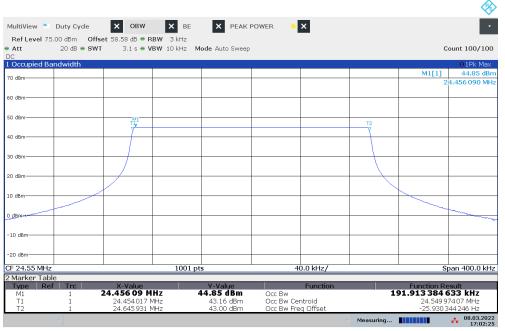
Applicable limits for bands tested in this report is as follows:

Frequency Band
24.45 to 24.65 MHz
26.20 to 26.42 MHz

TEST PROCEDURE

ANSI C63.26-2015 Clause 5.4.4

99% bandwidth measurement function of the spectrum analyzer was used to measure 99% occupied bandwidth.


RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/8/22 - 3/9/22

Mode	Meas. 99% BW (kHz)		Limit (MHz)	Pass/Fail		Limit (MHz)	Pass/Fail
26.45 to 24.65 MHz	191.913	24.454	24.45	Pass	24.646	24.65	Pass
26.20 to 26.42 MHz	210.935	26.204	26.2	Pass	26.415	26.42	Pass

Page 15 of 41

<u>24.45 – 24.65 MHz Mode</u>

17:02:26 08.03.2022

26.20 - 26.42 MHz Mode

08:56:22 09.03.2022

Page 16 of 41

8.3. PEAK OUTPUT POWER

RULE PARTS

§2.1046 & §90.205 (r)

<u>LIMIT</u>

Per §90.103 (c)(3): Operations in this band are limited to oceanographic radars using transmitters with a peak equivalent isotropically radiated power (EIRP) not to exceed 25 dBW (316 W or +55 dBm). Oceanographic radars shall not cause harmful interference to, nor claim protection from interference caused by, stations in the fixed or mobile services as specified in §2.106, footnotes 5.132A, 5.145A, and US132A. See Resolution 612 of the ITU Radio Regulations for international coordination requirements and for recommended spectrum sharing techniques.

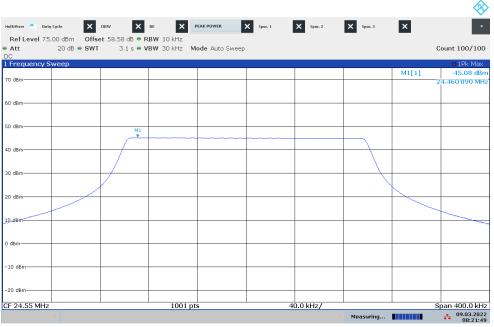
Per Resolution 612 (REV. WRC-12), (d)(2): The Peak E.I.R.P. of an oceanographic radar shall not exceed 25 dBW (316 W or +55 dBm).

TEST PROCEDURE

ANSI C63.26-2015 Clause 5.2.3.5

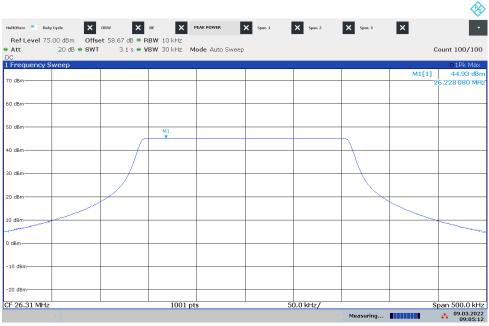
RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22


Mode	Frequency	Meas. Peak	Cable Loss	EUT Ant. Gain	Peak EIRP	Peak EIRP	Limit	Pass or
wode	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	Fail
24.45 to 24.65 MHz	24.461	45.08	5	2	42.08	16.14	316	Pass
26.20 to 26.42 MHz	26.228	44.93	5	2	41.93	15.60	316	Pass

Peak EIRP is based on the use of helical wound monopole antenna over finite ground plane, which has a maximum gain of 2 dBi, declared by manufacturer. The actual peak EIRP values are based on a minimum of 5 dB cable loss of RG213 or RG214 between the RF output and the antenna (power measurement was made at the end of the cable).

As the signal is a swept CW signal, the instantaneous emission bandwidth is much less than the 10 kHz used for the peak power measurement. The sweep rate is slow enough to not require any correction for desensitization, which is further supported by comparing the peak power levels are almost the same for the occupied bandwidth measurement made using a 1 kHz RBW and the power measurement.


Page 17 of 41

24.45 to 24.65 MHz Mode

08:21:49 09.03.2022

26.20 to 26.42 MHz Mode

09:05:12 09.03.2022

Page 18 of 41

8.4. FREQUENCY STABILITY

RULE PARTS

(a)(1): From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

§2.1055 (d)(1): Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

The EUT is operated near the coast and installed only in climate-controlled enclosure or building with the following conditions:

Temperature: -30°C to +50°C Nominal Voltage: 120 VAC

<u>LIMIT</u>

§90.213 (a)

TABLE 1 TO §90.213(a)—MINIMUM FREQUENCY STABILITY

[Parts per million (ppm)]

		Mobile stations		
Frequency range	Fixed and base	Over 2 watts output	2 watts or less output	
(MHz)	stations	power	power	
Below 25	^{1 2 3} 100	100	200	
25-50	20	20	50	

Applicable Limit: 20 ppm

TEST PROCEDURES

ANSI C63.26-2015 Clause 5.6.5

All measurements were performed with the CW signals of $F_c = \sim 24.55$ MHz and $F_c = \sim 26.31$ MHz, representing the 24.45 – 24.65 MHz and 26.20 – 26.42 MHz modes, respectively.

Test procedures for temperature variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C, stabilize the EUT for at least 45 minutes and record the F_c .
- c. Adjust chamber temperature from -30°C to +50°C at 10°C interval. Record maximum change in F_c at each temperature.
- d. A period of at least 45 minutes is provided to allow stabilization of the equipment at each temperature level.

Test procedures for voltage variation:

- a. Position the EUT in temperature/humidity chamber.
- b. Set chamber temperature to +20°C.
- c. The primary supply voltage is varied from 85% to 115% of the nominal value.
- Voltages:

Nominal: 120 VAC 85% of the Nominal: 102 VAC 115% of the Nominal: 138 VAC

Page 20 of 41

Employee ID: 25368 Location: Environmental Chamber Test Date: 3/10/22 - 3/11/22

24.45 to 24.65 MHz Mode						
		CW (Fc)				
Temp (°C)	Input Power (AC)	Meas. Freq. (MHz)	Freq. Drift (ppm)	Pass/Fail		
50	Nominal	24.5500	0.0000	Pass		
40	Nominal	24.5500	0.0000	Pass		
30	Nominal	24.5500	0.0000	Pass		
20	Nominal	24.5500				
10	Nominal	24.5500	0.0000	Pass		
0	Nominal	24.5500	0.0000	Pass		
-10	Nominal	24.5500	0.0000	Pass		
-20	Nominal	24.5500	0.0000	Pass		
-30	Nominal	24.5500	0.0000	Pass		
20	85%	24.5500	0.0000	Pass		
20	115%	24.5500	0.0000	Pass		

26.20 to 26.42 MHz Mode							
	Input Power (AC)	CW (Fc)					
Temp		Meas.	Freq.				
(°C)		Freq.	Drift	Pass/Fail			
		(MHz)	(ppm)				
50	Nominal	26.3100	0.0000	Pass			
40	Nominal	26.3100	0.0000	Pass			
30	Nominal	26.3100	0.0000	Pass			
20	Nominal	26.3100					
10	Nominal	26.3100	0.0000	Pass			
0	Nominal	26.3100	0.0000	Pass			
-10	Nominal	26.3100	0.0000	Pass			
-20	Nominal	26.3100	0.0000	Pass			
-30	Nominal	26.3100	0.0000	Pass			
20	85%	26.3100	0.0000	Pass			
20	115%	26.3100	0.0000	Pass			

Page 21 of 41

8.5. TX CONDUCTED SPURIOUS EMISSIONS AND BAND EDGE

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (26.42 MHz) = 264.20 MHz$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and band edge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 42 \ dBm \ (16 \ W)$

Applicable Peak Limit = 42 - (43 + 10log(16))= 42 - 55= $-13 \, dBm$

Page 22 of 41

ANSI C63.26-2015 Clause 5.7

The widest emission bandwidth of EUT was used at 9 kHz – 1 GHz spurious emission tests.

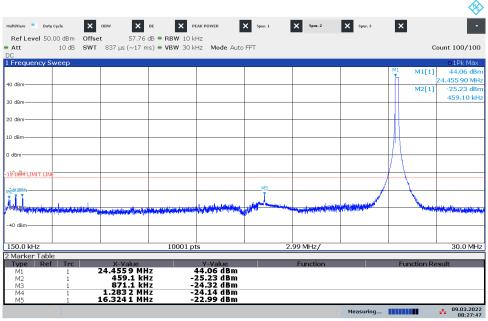
For Bandedge, the measurements were measured by transmitting the CW signals of low-end (F_L) and the high-end (F_H) of each frequency band.

RESULTS

Employee ID: 25368 Location: mmWave Chamber 1 Test Date: 3/9/22

Mode	9 - 150 kHz	150 kHz - 30 MHz	30 MHz - 1 GHz	Bandedge
24.45 – 24.65 MHz	Pass	Pass	Pass	Pass
26.20 – 26.42 MHz	Pass	Pass	Pass	Pass

Page 23 of 41


8.5.1. SPURIOUS EMISSIONS

24.45 to 24.65 MHz Mode, 9 - 150 kHz

dBm				
10 dBm				
20 dBm				
30 dBm M1 40 dBm				
	mmm	munhanna	man man m	mmmmmmmm
50 dBm				
50 dBm				
0.0 kHz		10001 pts	14.1 kHz/	150.0 kH

08:29:24 09.03.2022

24.45 to 24.65 MHz Mode, 150 kHz - 30 MHz

08:27:47 09.03.2022

*Marker M1 is the fundamental signal.

Page 24 of 41

24.45 to 24.65 MHz Mode, 30 MHz - 1 GHz

08:31:24 09.03.2022

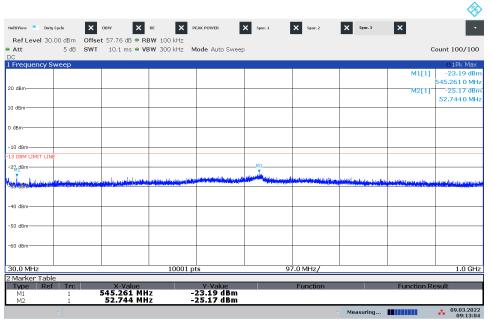
UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 41

26.20 to 26.42 MHz Mode, 9 - 150 kHz

09:06:31 09.03.2022

26.20 to 26.42 MHz Mode, 150 kHz to 30 MHz

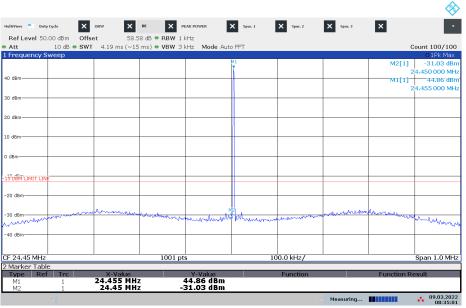


09:10:49 09.03.2022

*Marker M1 is the fundamental signal.

Page 26 of 41

26.20 to 26.42 MHz Mode, 30 MHz - 1 GHz


09:13:05 09.03.2022

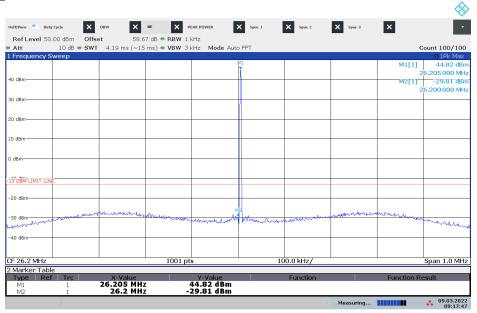
UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 319-4000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 41


8.5.2. BAND EDGE

24.45 to 24.65 MHz Mode, Low End

08:35:01 09.03.2022


24.45 to 24.65 MHz Mode, High End

08:38:13 09.03.2022

Page 28 of 41

26.20 to 26.42 MHz Mode, Low End

09:17:48 09.03.2022

26.20 to 26.42 MHz Mode, High End

	_			_		_	-	
ilti¥iew 🎴 Duty Cycle	× OBW	X BE	Y PEAK POWER	X Spur. 1	× Spur. 2	X Spur. 3	×	-
Ref Level 50.00 dBm	Offset	58.67 dB 🖷 RE	3W 1 kHz					
Att 10 dB	 SWT 4.19 ms (~15 ms) 🖷 VB	3W 3 kHz Mode A	uto FFT			(Count 100/100
Frequency Sweep							1	●1Pk Ma>
				M1			M1[1]	44.81 dB
								26.415 000 MF
) dBm							M2[1]	-30.36 dB
							2	26.420 000 MI
) dBm								
) dBm								
dBm								
dBm								
POBM'LIMIT LINE								
S'DBM'LIMIT LINE								
20 dBm								
	a market and a			M2		1. 1		
30 dBm	mound	mandun	mundered	Mar	ma hannon hade	Andream	mention	
30 dBm				11 . Marchine .				munnight
10 dBm								
io dom								
26.42 MHz	1	10	01 pts	1	100.0 kHz/		1	Span 1.0 MH
Marker Table								· ·
Type Ref Trc	X-Valu	e	Y-Value		Function		Function R	esult
M1 1	26.415	1Hz	44.81 dBm			4		
M2 1	26.42	1Hz	-30.36 dBm					

09:21:01 09.03.2022

Page 29 of 41

8.6. TX RADIATED SPURIOUS EMISSIONS

RULE PARTS

§2.1057 (a) (1): In all the measurements set forth in §2.1051 and §2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below: If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

10th harmonic of highest fundamental frequency = $10 \times (26.42 MHz) = 264.20 MHz$ Thus, spurious emissions are investigated from 9 kHz thru 1 GHz.

<u>LIMIT</u>

§ 90.210 (n): Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

§ 90.210 (b): Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log(P) dB.

The more stringent Peak power limit on § 90.210 (b)(3), which is the same limit as Rec ITU-R SM.329-10 Standard, is applied for spurious emissions and band edge.

Determination of Limit:

Maximum Declared Peak Conducted Power of EUT,

 $P_{max} = 42 \ dBm \ (16 \ W)$

Applicable Peak Limit = 42 - (43 + 10log(16))= 42 - 55= $-13 \, dBm$

Page 30 of 41

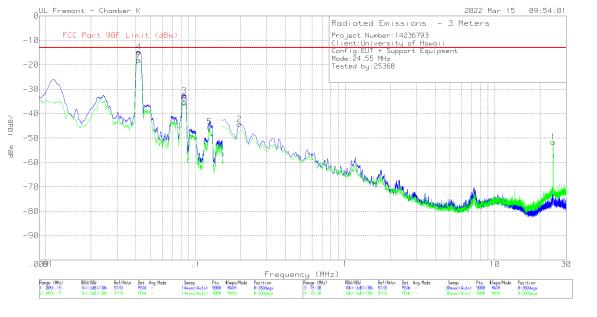
ANSI C63.26-2015 Clause 5.5.4

Below 30 MHz spurious emission testing was performed in chamber other than open area test site. Adequate comparison measurements were confirmed against 30-meter open area test site and sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

RADIATED EMISSION

Where relevant, the following sample calculations are provided:

EIRP(dBm) = Meter Reading (dBuV) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBuV - to - dBm) Unit Conversion Factor @ 3m= 34.27 dBm + 48.3 dB/m + (-32.2) dB + (-95.2)= -44.83 dBm


EIRP(dBm) = Meter Reading (dBm) + Antenna Factor (dB/m) + PreAmp Gain/Cbl Loss (dB)+ (dBm - to - dBm) Unit Conversion Factor @ 3m= -60 dBm + 28 dB/m + (-27) dB + 11.7= -47.3 dBm

RESULTS

Employee ID: 25368 Location: Chamber K Test Date: 3/14/22 - 3/15/22

Page 31 of 41

24.45 – 24.65 MHz Mode, 9 kHz to 30 MHz

FCC Part 90F 9kHz-30MHz Tx.TST jm4163 14 Mar 2022

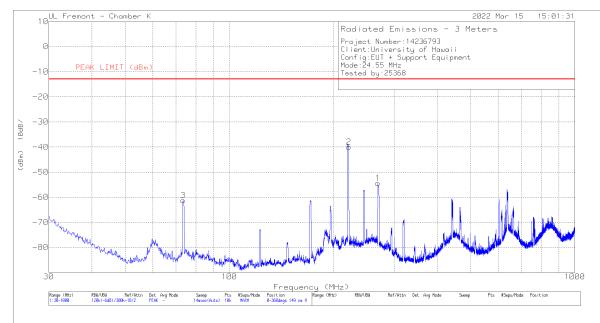
Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
3	.0842	39.04	Pk	55.7	-32.2	-95.2	-32.66	-13	-19.66	0-360	On
4	.0417	55.42	Pk	57.2	-32.1	-95.2	-14.68	-13	-1.68	0-360	On
5	.124	26.23	Pk	55.8	-32.2	-95.2	-45.37	-13	-32.37	0-360	On
6	.0839	36.21	Pk	55.7	-32.2	-95.2	-35.49	-13	-22.49	0-360	Off
7	.0416	51.88	Pk	57.2	-32.1	-95.2	-18.22	-13	-5.22	0-360	Off
2	.1964	23.05	Pk	60.1	-32.2	-95.2	-44.25	-13	-31.25	0-360	Off
1*	24.5698	41.68	Pk	33.5	-31.6	-95.2	-51.62	-13	-38.62	0-360	On

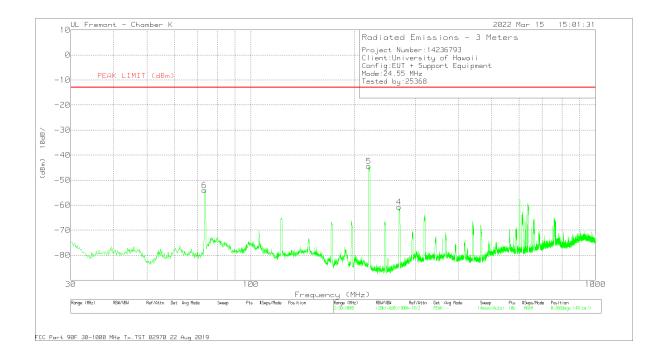
Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0829	39.34	Pk	55.7	-32.2	-95.2	-32.36	-13	-19.36	77	On
.0406	55.91	Pk	57.2	-32.1	-95.2	-14.19	-13	-1.19	88	On
.1224	26.59	Pk	55.8	-32.2	-95.2	-45.01	-13	-32.01	158	On
.0823	35.68	Pk	55.7	-32.2	-95.2	-36.02	-13	-23.02	174	Off
.0401	52.28	Pk	57.2	-32.1	-95.2	-17.82	-13	-4.82	172	Off
.2115	24.75	Pk	59.5	-32.2	-95.2	-43.15	-13	-30.15	91	Off


Pk - Peak detector

Page 32 of 41

24.45 - 24.65 MHz Mode, 30 to 1000 MHz

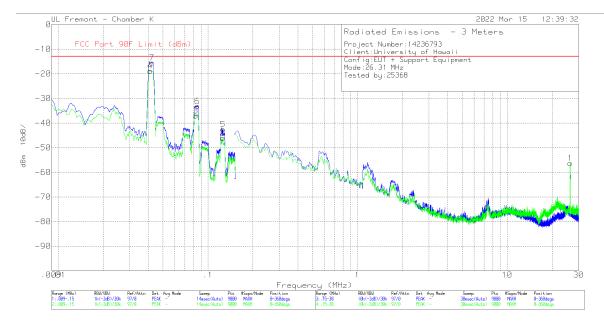
FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

Page 33 of 41

Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBm)					(dBm)					
1	269.008	-56.01	Pk	19.5	-29.9	12	-54.41	-13	-41.41	0-360	149	н
2	221.672	-37.91	Pk	17.4	-30.2	10.7	-40.01	-13	-27.01	0-360	149	Н
3	73.456	-52.22	Pk	14.2	-31.1	7.8	-61.32	-13	-48.32	0-360	149	Н
4	269.008	-56.92	Pk	19.5	-29.9	6.6	-60.72	-13	-47.72	0-360	149	V
5	220.023	-38.92	Pk	17.4	-30.2	7.3	-44.42	-13	-31.42	0-360	149	V
6	73.359	-46.34	Pk	14.2	-31.1	9.2	-54.04	-13	-41.04	0-360	149	V

Pk - Peak detector


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
269.03	-54.24	Pk	19.5	-29.9	12	-52.64	-13	-39.64	339	106	Н
220.088	-36.24	Pk	17.4	-30.2	10.2	-38.84	-13	-25.84	192	108	Н
73.4248	-50.23	Pk	14.2	-31.1	7.8	-59.33	-13	-46.33	82	248	Н
269.09	-55.53	Pk	19.5	-29.9	6.6	-59.33	-13	-46.33	196	128	V
220.115	-38.17	Pk	17.4	-30.2	7.3	-43.67	-13	-30.67	351	168	V
73.5348	-44.09	Pk	14.1	-31.1	9.2	-51.89	-13	-38.89	5	99	V

Pk - Peak detector

Page 34 of 41

26.20 to 26.42 MHz Mode, 9 kHz to 30 MHz

FCC Part 90F 9kHz-30MHz Tx.TST jm4163 14 Mar 2022

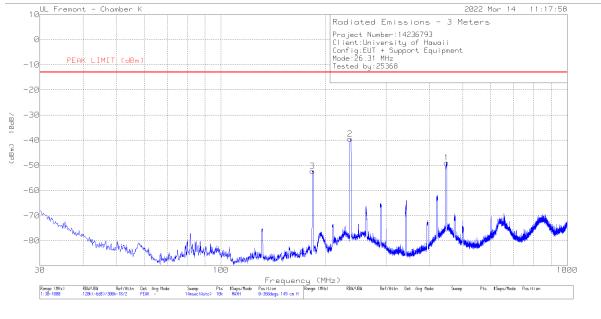
Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
5	.1261	29.07	Pk	55.8	-32.2	-95.2	-42.53	-13	-29.53	0-360	On
6	.0849	38.47	Pk	55.7	-32.2	-95.2	-33.23	-13	-20.23	0-360	On
7	.0422	54.65	Pk	57.2	-32.1	-95.2	-15.45	-13	-2.45	0-360	On
2	.1258	25.63	Pk	55.8	-32.2	-95.2	-45.97	-13	-32.97	0-360	Off
3	.0829	34.66	Pk	55.7	-32.2	-95.2	-37.04	-13	-24.04	0-360	Off
4	.0412	51.36	Pk	57.2	-32.1	-95.2	-18.74	-13	-5.74	0-360	Off
1*	26.2946	37.24	Pk	33.3	-31.6	-95.2	-56.26	-13	-43.26	0-360	On

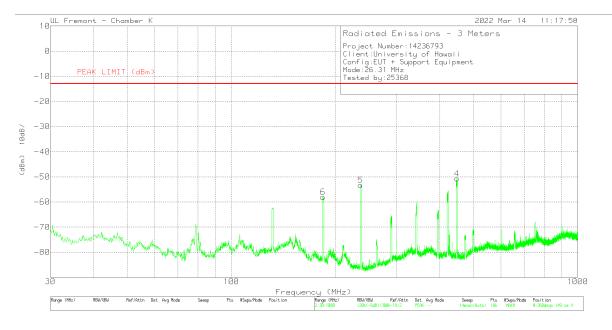
Pk - Peak detector

Power levels of emissions were lower with antenna face-down, comparing to face-on and face-off, at prescan.

*Marker 1 is the fundamental signal.


Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Ant (E ACF)	Amp/Cbl (dB)	Unit Conversion	Corrected Reading dBm	FCC Part 90F Limit (dBm)	Margin (dB)	Azimuth (Degs)	Antenna Face
.0403	54.95	Pk	57.2	-32.1	-95.2	-15.15	-13	-2.15	111	On
.0846	38.44	Pk	55.7	-32.2	-95.2	-33.26	-13	-20.26	118	On
.1262	27.88	Pk	55.8	-32.2	-95.2	-43.72	-13	-30.72	130	On
.1253	25.62	Pk	55.8	-32.2	-95.2	-45.98	-13	-32.98	177	Off
.0829	34.62	Pk	55.7	-32.2	-95.2	-37.08	-13	-24.08	177	Off
.0402	51.73	Pk	57.2	-32.1	-95.2	-18.37	-13	-5.37	177	Off


Pk - Peak detector

Page 35 of 41

26.20 - 26.42 MHz Mode, 30 to 1000 MHz

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

FCC Part 90F 30-1000 MHz Tx.TST 02970 22 Aug 2019

Page 36 of 41

Trace Markers - Pre-scan

Marker	Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	448.07	-55.61	Pk	22.9	-29.2	13	-48.91	-13	-35.91	0-360	149	Н
2	235.931	-40.87	Pk	17.9	-30.1	13.6	-39.47	-13	-26.47	0-360	149	Н
3	183.745	-46.06	Pk	17.6	-30.4	6.6	-52.26	-13	-39.26	0-360	149	Н
4	448.361	-50.68	Pk	22.9	-29.2	6.3	-50.68	-13	-37.68	0-360	149	V
5	236.125	-48.25	Pk	17.9	-30.1	7.1	-53.35	-13	-40.35	0-360	149	V
6	183.939	-54.18	Pk	17.6	-30.4	9	-57.98	-13	-44.98	0-360	149	V

Pk - Peak detector

Radiated Emissions – Final Data

Frequency (MHz)	Meter Reading (dBm)	Det	82258 ACF (dB)	Amp/Cbl (dB)	Sub Factor (dB)	Corrected Reading (dBm)	PEAK LIMIT (dBm)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
448.131	-54.48	Pk	22.9	-29.2	13	-47.78	-13	-34.78	51	279	Н
235.902	-41.14	Pk	17.9	-30.1	13.6	-39.74	-13	-26.74	293	134	Н
183.455	-46.69	Pk	17.6	-30.4	6.5	-52.99	-13	-39.99	265	150	Н
448.978	-48.91	Pk	22.9	-29.2	6.3	-48.91	-13	-35.91	174	109	V
236.039	-42.86	Pk	17.9	-30.1	7.1	-47.96	-13	-34.96	78	201	V
183.872	-51.08	Pk	17.6	-30.4	9	-54.88	-13	-41.88	78	201	V

Pk - Peak detector

Page 37 of 41